1.Research on the mechanism of gentiopicroside preventing macrophage-mediated liver fibrosis by regulating the MIF-SPP1 signaling pathway in hepatic stellate cells.
Jixu WANG ; Yingbin ZHU ; Maoli CHEN ; Yongfeng HAN
Chinese Journal of Cellular and Molecular Immunology 2025;41(7):593-602
Objective To explore the mechanism by which gentiopicroside (GPS) prevents macrophage-mediated hepatic fibrosis by regulating the macrophage migration inhibitory factor (MIF)-secreted phosphoprotein 1 (SPP1) signaling pathway in hepatic stellate cells. Methods LX-2 cells were divided into control group, transforming growth factor β(TGF-β) group, and TGF-β combined with GPS (25, 50, 100, 150 μmol/mL) groups. Cell proliferation was detected by EDU assay, cell invasion was assessed by TranswellTM assay, and the protein expressions of α-smooth muscle actin (α-SMA) and type I collagen (COL1A1) were measured by Western blot. M1-type macrophage-conditioned medium (M1-CM) was used to treat LX-2 cells in the TGF-β group and TGF-β combined with GPS group. The concentrations of inducible nitric oxide synthase (iNOS) and arginase 1 (Arg1) in the cell supernatant, as well as cell proliferation, invasion ability, and the expressions of α-SMA and COL1A1 were detected. Bioinformatics analysis was performed to identify the target intersections of GPS, hepatic fibrosis, and macrophage-related genes. Drug affinity responsive target stability (DARTS) experiments and Western blot were used to verify the regulatory effect of GPS on MIF. Furthermore, LX-2 cells were divided into control group, TGF-β group, TGF-β combined with M2-CM group, TGF-β and oe-NC combined with M2-CM group, and TGF-β and oe-MIF combined with M2-CM group to analyze the concentrations of iNOS and Arg1 in the cell supernatant, as well as changes in cell proliferation, invasion, and the expressions of α-SMA and COL1A1. LX-2 cells were also divided into control group, TGF-β group, TGF-β combined with oe-NC group, TGF-β combined with oe-MIF group, and TGF-β and oe-MIF combined with GPS group to determine the protein expressions of MIF and SPP1 by Western blot. A rat model of hepatic fibrosis was constructed to explore the potential therapeutic effects of GPS on hepatic fibrosis in vivo. Results Compared with the control group, the proliferation and invasion abilities of LX-2 cells in the TGF-β group were increased, and the protein expressions of α-SMA and COL1A1 were enhanced. GPS intervention inhibited the proliferation and invasion of LX-2 cells under TGF-β conditions and reduced the expressions of α-SMA and COL1A1. Compared with the control group, the concentration of iNOS in the cell supernatant of the TGF-β group was upregulated, while the concentration of Arg1 was decreased. M1-CM treatment further increased the concentration of iNOS, decreased the concentration of Arg1, and promoted cell proliferation and invasion, as well as upregulated the expressions of α-SMA and COL1A1 on the basis of TGF-β intervention. However, GPS could reverse the effects of M1-CM intervention. Bioinformatics analysis revealed that MIF was one of the target intersections of GPS, hepatic fibrosis, and macrophage-related genes, and GPS could target and inhibit its expression. Compared with the TGF-β group, after M2-CM intervention, the concentration of iNOS in the cell supernatant decreased, the concentration of Arg1 increased, the proliferation and invasion abilities of LX-2 cells were reduced, and the expressions of α-SMA and COL1A1 were weakened. However, overexpression of MIF reversed the effects of M2-CM intervention. Western blot results showed that compared with the control group, the protein expressions of MIF and SPP1 were enhanced in the TGF-β group. Overexpression of MIF further enhanced the expressions of MIF and SPP1, while GPS intervention inhibited the expressions of MIF and SPP1. In the animal experiment, GPS intervention treatment alleviated liver injury in rats with hepatic fibrosis and inhibited the expressions of MIF and SPP1, as well as α-SMA and COL1A1 in liver tissue. Conclusion GPS may prevent macrophage-mediated hepatic fibrosis by inhibiting the MIF-SPP1 signaling pathway in hepatic stellate cells.
Hepatic Stellate Cells/metabolism*
;
Signal Transduction/drug effects*
;
Macrophage Migration-Inhibitory Factors/genetics*
;
Liver Cirrhosis/prevention & control*
;
Macrophages/drug effects*
;
Iridoid Glucosides/pharmacology*
;
Humans
;
Cell Proliferation/drug effects*
;
Animals
;
Cell Line
;
Collagen Type I/metabolism*
;
Collagen Type I, alpha 1 Chain
;
Intramolecular Oxidoreductases/genetics*
;
Rats
;
Transforming Growth Factor beta/pharmacology*
;
Actins/metabolism*
2.Diterpenoids and lignans from fossil Chinese medicinal succinum and their activity against renal fibrosis.
Yefei CHEN ; Yunfei WANG ; Yunyun LIU ; Yongming YAN ; Yongxian CHENG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):888-896
Five previously undescribed diterpenoids, named succipenoids D‒H (1‒5), along with four undescribed lignans, named succignans A‒D (6‒9), were isolated from the dichloromethane extract of Chinese medicinal succinum. Compounds 1‒5 were characterized as nor-abietane diterpenoids, while compounds 6‒9 were identified as lignans polymerized from two groups of phenylpropanoid units. The structures of these novel compounds, including their absolute configurations, were determined through spectroscopic and computational methods. Biological assessments of renal fibrosis demonstrated that compounds 6 and 7 effectively reduce the expression of proteins associated with renal fibrosis, including α-smooth muscle actin (α-SMA), collagen I, and fibronectin in transforming growth factor-β1 (TGF-β1) induced normal rat kidney proximal tubular epithelial cells (NRK-52e).
Animals
;
Rats
;
Lignans/isolation & purification*
;
Diterpenes/isolation & purification*
;
Fibrosis/drug therapy*
;
Drugs, Chinese Herbal/pharmacology*
;
Molecular Structure
;
Cell Line
;
Kidney Diseases/pathology*
;
Transforming Growth Factor beta1/genetics*
;
Kidney/metabolism*
;
Actins/genetics*
;
Fibronectins/genetics*
;
Collagen Type I/genetics*
;
Epithelial Cells/metabolism*
3.Study on anti-adhesion effect and mechanism of dynamic and static stress stimulation during early healing process of rat Achilles tendon injury.
Jiani WU ; Yingzi JIANG ; Guanyu WANG ; Liliao WANG ; Jie BAO ; Jun WANG
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(11):1391-1398
OBJECTIVE:
To investigate the anti-adhesive effect and underlying mechanism of dynamic and static stress stimulation on the early healing process of rat Achilles tendon injury.
METHODS:
Achilles tendon tissues of 15 male Sprague Dawley (SD) rats aged 4-6 weeks were isolated and cultured by enzyme digestion method. Rat Achilles tendon cells were treated with tumor necrosis factor α to construct the Achilles tendon injury cell model, and dynamic stress stimulation (dynamic group) and static stress stimulation (static group) were applied respectively, while the control group was not treated. Live/dead cell double staining was used to detect cell activity, ELISA assay was used to detect the expression of α smooth muscle actin (α-SMA), and real-time fluorescence quantitative PCR was used to detect the mRNA expression of collagen type Ⅰ (COL1A1), collagen type Ⅲ (COL3A1), and Scleraxis (SCX). Thirty male SD rats aged 4-6 weeks underwent Achilles tendon suture and were randomly divided into dynamic group (treated by dynamic stress stimulation), static group (treated by static stress stimulation), and control group (untreated), with 10 rats in each group. HE staining and scoring were performed to evaluate the healing of Achilles tendon at 8 days after operation. COL1A1 and COL3A1 protein expressions were detected by immunohistochemical staining, α-SMA and SCX protein expressions were detected by Western blot, and maximum tendon breaking force and tendon stiffness were detected by biomechanical stretching test.
RESULTS:
In vitro cell experiment, when compared to the static group, the number of living cells in the dynamic group was higher, the expression of α-SMA protein was decreased, the relative expression of COL3A1 mRNA was decreased, and the relative expression of SCX mRNA was increased, and the differences were all significant ( P<0.05). In the in vivo animal experiment, when compared to the static group, the tendon healing in the dynamic group was better, the HE staining score was lower, the expression of COL1A1 protein was increased, the expression of COL3A1 protein was decreased, the relative expression of SCX protein was increased, the relative expression of α-SMA protein was decreased, and the tendon stiffness was increased, the differences were all significant ( P<0.05).
CONCLUSION
Compared with static stress stimulation, the dynamic stress stimulation improves the fibrosis of the scar tissue of the rat Achilles tendon, promote the recovery of the biomechanical property of the Achilles tendon, and has obvious anti-adhesion effect.
Animals
;
Achilles Tendon/injuries*
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Collagen Type I/metabolism*
;
Collagen Type III/metabolism*
;
Tendon Injuries/therapy*
;
Wound Healing
;
Stress, Mechanical
;
Actins/metabolism*
;
Cells, Cultured
;
Tissue Adhesions/prevention & control*
;
Tumor Necrosis Factor-alpha/metabolism*
;
RNA, Messenger/genetics*
;
Disease Models, Animal
;
Collagen Type I, alpha 1 Chain/metabolism*
;
Biomechanical Phenomena
;
Basic Helix-Loop-Helix Transcription Factors
4.Selection and validation of reference genes for quantitative real-time PCR analysis in Paeonia veitchii.
Meng-Ting LUO ; Jun-Zhang QUBIE ; Ming-Kang FENG ; A-Xiang QUBIE ; Bin HE ; Yue-Bu HAILAI ; Wen-Bing LI ; Zheng-Ming YANG ; Ying LI ; Xin-Jia YAN ; Yuan LIU ; Shao-Shan ZHANG
China Journal of Chinese Materia Medica 2023;48(21):5759-5766
Paeonia veitchii and P. lactiflora are both original plants of the famous Chinese medicinal drug Paeoniae Radix Rubra in the Chinese Pharmacopoeia. They have important medicinal value and great potential in the flower market. The selection of stable and reliable reference genes is a necessary prerequisite for molecular research on P. veitchii. In this study, two reference genes, Actin and GAPDH, were selected as candidate genes from the transcriptome data of P. veitchii. The expression levels of the two candidate genes in different tissues(phloem, xylem, stem, leaf, petiole, and ovary) and different growth stages(bud stage, flowering stage, and dormant stage) of P. veitchii were detected using real-time fluorescence quantitative technology(qRT-PCR). Then, the stability of the expression of the two reference genes was comprehensively analyzed using geNorm, NormFinder, BestKeeper, ΔCT, and RefFinder. The results showed that the expression patterns of Actin and GAPDH were stable in different tissues and growth stages of P. veitchii. Furthermore, the expression levels of eight genes(Pv-TPS01, Pv-TPS02, Pv-CYP01, Pv-CYP02, Pv-CYP03, Pv-BAHD01, Pv-UGT01, and Pv-UGT02) in different tissues were further detected based on the transcriptome data of P. veitchii. The results showed that when Actin and GAPDH were used as reference genes, the expression trends of the eight genes in different tissues of P. veitchii were consistent, validating the reliability of Actin and GAPDH as reference genes for P. veitchii. In conclusion, this study finds that Actin and GAPDH can be used as reference genes for studying gene expression levels in different tissues and growth stages of P. veitchii.
Real-Time Polymerase Chain Reaction/methods*
;
Paeonia/genetics*
;
Actins/genetics*
;
Reproducibility of Results
;
Transcriptome
;
Glyceraldehyde-3-Phosphate Dehydrogenases/genetics*
;
Reference Standards
;
Gene Expression Profiling/methods*
5.Effect of forsythiaside A against CCl_4-induced liver fibrosis in mice and its mechanism.
Qian GUO ; Yi ZHANG ; Zhen-Lin HUANG ; Bin LU ; Li-Li JI
China Journal of Chinese Materia Medica 2022;47(22):6137-6145
This study aims to investigate the efficacy of forsythiaside A(FTA) against CCl_4-induced liver fibrosis and the mechanism. Specifically, activities of serum alanine/aspartate aminotransferase(ALT/AST) and hydroxyproline(HYP) level in liver were detected, and pathological morphology of liver was observed based on hematoxylin-eosin(HE) staining, Masson's trichrome staining, and Sirius red staining of liver. On this basis, the effect of FTA on liver fibrosis was evaluated. The mRNA expression of actin alpha 2/α-smooth muscle actin(Acta2/α-SMA), transforming growth factor β(Tgfβ), collagen Ⅰ alpha 1(Col1 a1), and collagen Ⅲ alpha 1(Col3 a1) in liver tissue and hepatic stellate cells(HSC) was determined by qPCR, and the protein expression of α-SMA in liver tissue and HSC was measured by Western blot to assess the inhibition of FTA on HSC activation. The protein expression of α-SMA, vi-mentin(Vim), vascular endothelial cadherin(Ve-cadherin), and platelet endothelial cell adhesion molecule-1(PECAM-1/CD31) was measured by Western blot to evaluate the reverse of endothelial-mesenchymal transition(EMT) by FTA. The efficacy of FTA in relieving CCl_4-induced liver fibrosis was evidenced by the alleviation of hepatocyte necrosis, liver inflammation, and hepatic collagen deposition. FTA decreased the mRNA expression of Acta2, Tgfβ, Col1 a1, and Col3 a1 and protein expression of α-SMA both in vivo and in vitro. FTA reversed the increase of α-SMA and Vim and the decrease of CD31 and Ve-cadherin in livers from mice treated with CCl_4. Therefore, FTA alleviated CCl_4-induced liver fibrosis in mice via suppressing HSC activation and reversing EMT.
Animals
;
Mice
;
Actins/metabolism*
;
Alanine Transaminase/blood*
;
Carbon Tetrachloride/metabolism*
;
Collagen/metabolism*
;
Hepatic Stellate Cells
;
Liver/drug effects*
;
Liver Cirrhosis/genetics*
;
RNA, Messenger/metabolism*
;
Transforming Growth Factor beta/metabolism*
;
Glycosides/therapeutic use*
6.IL-17A activates mouse lung fibroblasts through promoting chemokine CXCL12 secretion.
Huaying WANG ; Jiapei LYU ; Liping CHEN ; Wanjun YU
Journal of Zhejiang University. Medical sciences 2020;49(6):758-764
OBJECTIVE:
To investigate the role of IL-17A in promoting the activation of lung fibroblasts and the secretion of chemokine CXCL12, and to explore the possible mechanism.
METHODS:
Lung tissues of BALB/c mice were collected after intraperitoneal injection of recombinant mouse IL-17A (rmIL-17A). Real-time RT-PCR and Western blotting were used to detect the expression levels of α-smooth muscle actin (α-SMA) and collagen I in lung tissues, and immunohistochemical staining and real-time RT-PCR were used to determine the expression of CXCL12. Normal mouse primary lung fibroblasts were isolated and cultured, and identified by immunofluorescence staining with optical microscopy. Cells and supernatant of culture medium were collected after stimulation with rmIL-17A at different concentrations. mRNA levels of α-SMA, collagen I, and CXCL12 in the cells were determined by real-time RT-PCR, and the levels of collagen I and CXCL12 in the supernatant of culture medium were determined by ELISA.
RESULTS:
The mRNA and protein levels of α-SMA and collagen I in the lung tissue of mice injected with rmIL-17A were significantly increased compared with the control group (all
CONCLUSIONS
s: IL-17A can promote the activation of lung fibroblasts and translation into myofibroblast. The secretion of collagen is increased, which promote the deposition of extracullular matrix, and leads to the occurrence and development of lung fibrosis. CXCL12, a chemokine secreted by activated fibroblasts, may be involved in this process.
Actins/genetics*
;
Animals
;
Cells, Cultured
;
Chemokine CXCL12/metabolism*
;
Fibroblasts/metabolism*
;
Interleukin-17/pharmacology*
;
Lung/metabolism*
;
Mice
;
Mice, Inbred BALB C
7.Matrine suppresses lipopolysaccharide-induced fibrosis in human peritoneal mesothelial cells by inhibiting the epithelial-mesenchymal transition.
Yi-Zheng LI ; Xi PENG ; Yun-Hua MA ; Fu-Ji LI ; Yun-Hua LIAO
Chinese Medical Journal 2019;132(6):664-670
BACKGROUND:
Peritoneal fibrosis is the primary reason that patients with end-stage renal disease (ESRD) have to cease peritoneal dialysis. Peritonitis caused by Gram-negative bacteria such as Escherichia coli (E. coli) were on the rise. We had previously shown that matrine inhibited the formation of biofilm by E. coli. However, the role of matrine on the epithelial-mesenchymal transition (EMT) in peritoneal mesothelial cells under chronic inflammatory conditions is still unknown.
METHODS:
We cultured human peritoneal mesothelial cells (HPMCs) with lipopolysaccharide (LPS) to induce an environment that mimicked peritonitis and investigated whether matrine could inhibit LPS-induced EMT in these cells. In addition, we investigated the change in expression levels of the miR-29b and miR-129-5p.
RESULTS:
We found that 10 μg/ml of LPS induced EMT in HPMCs. Matrine inhibited LPS-induced EMT in HPMCs in a dose-dependent manner. We observed that treatment with matrine increased the expression of E-cadherin (F = 50.993, P < 0.01), and decreased the expression of alpha-smooth muscle actin (F = 32.913, P < 0.01). Furthermore, we found that LPS reduced the expression levels of miR-29b and miR-129-5P in HPMCs, while matrine promoted the expression levels of miR-29b and miR-129-5P.
CONCLUSIONS
Matrine could inhibit LPS-induced EMT in HPMCs and reverse LPS inhibited expressions of miR-29 b and miR-129-5P in HPMCs, ultimately reduce peritoneal fibrosis. These findings provide a potential theoretical basis for using matrine in the prevention and treatment of peritoneal fibrosis.
Actins
;
metabolism
;
Alkaloids
;
therapeutic use
;
Cadherins
;
metabolism
;
Cells, Cultured
;
Epithelial-Mesenchymal Transition
;
drug effects
;
Epithelium
;
drug effects
;
Fibrosis
;
chemically induced
;
genetics
;
metabolism
;
Humans
;
Lipopolysaccharides
;
toxicity
;
MicroRNAs
;
metabolism
;
Peritoneal Fibrosis
;
drug therapy
;
Quinolizines
;
therapeutic use
8.Effect of Quyu Chencuo Formula () on Renal Fibrosis in Obstructive Nephropathy Rats.
Rui ZHU ; Xing-Guo DU ; Sheng-Lan YANG ; Yan-Ran WU ; Jian-Guo LIU
Chinese journal of integrative medicine 2019;25(3):190-196
OBJECTIVE:
To observe the effect of Quyu Chencuo Formula (, QCF) on renal fibrosis in rats with obstructive nephropathy.
METHODS:
Twenty-four rats were randomly divided into three groups, 4 for sham operation as the control group, 10 for unilateral ureteral obstruction (UUO) model group, and the rest 10 for QCF treating UUO model group. All rats were sacrificed under 3% pentobarbital (50 mg/kg) anesthesia on the 14th day after surgery, then the right kidney samples of rats were harvested for hematoxylin eosin (HE) staining and Masson staining to observe the renal pathological changes. Immunohistochemistry and Western blotting were used to examine the expression of transforming growth factor β1 (TGF-β1), and real-time polymerase chain reaction (RT-PCR) was employed to examine the expressions of TGF-β1, α-smooth muscle actin (α-SMA) and E-cadherin mRNA.
RESULTS:
HE and Masson staining showed that the renal interstitial of the rats in the control group had no significant fibrotic lesion; in the model group, there were obvious interstitial fibrosis; for the QCF group, there were epithelial cell necrosis, infiltration of lymphocytes and mononuclear cells, aggravated interstitial fibrosis in varied degrees, but the pathological changes were less in the QCF group than in the model group. The immunohistochemistry and Western blotting results showed that the TGF-β1 expression was increased significantly in the model group, while decreased significantly in the QCF group (P<0.05); RT-PCR showed that the mRNA expression of α-SMA and TGF-β1 increased significantly in the model group, while both were significantly decreased in the QCF group compared with the model group (P<0.05). The mRNA expression of E-cadherin was decreased significantly in the model group, and it was significantly increased in the QCF group as compared with the model group (P<0.05).
CONCLUSION
QCF may improve renal fibrosis by regulating the expressions of TGF-β1, α-SMA and E-cadherin, and prevent the progress of kidney fibrosis.
Actins
;
genetics
;
Animals
;
Cadherins
;
genetics
;
Drugs, Chinese Herbal
;
therapeutic use
;
Female
;
Fibrosis
;
Kidney
;
pathology
;
Kidney Diseases
;
drug therapy
;
metabolism
;
pathology
;
Male
;
RNA, Messenger
;
analysis
;
Rats
;
Rats, Wistar
;
Transforming Growth Factor beta1
;
genetics
9.Effect of microRNA-133b on Myocardial Fibrosis.
Song Lin ZHANG ; Fen Ling FAN ; Feng WEI ; Jun WANG ; Yu Shun ZHANG
Acta Academiae Medicinae Sinicae 2019;41(5):589-594
Objective To investigate the effect of microRNA-133b(miR-133b)on cardiac fibrosis and its mechanism.Methods Human cardiac fibroblasts(CFs)were harvested.The proliferation of CFs was detected by CCK8 during the overexpression and knock-down of miR-133b.The expressions of connective tissue growth factor(CTGF),α-smooth muscle actin(α-SMA),collagen Ⅰ,and collagen Ⅲ were detected with qRT-PCR and Western blot analysis after miR-133b overexpression or downexpression.Target genes of miR-133b were predicted by bioinformatics software.Dual-luciferase activity assay were used to verify a target gene of miR-133b.Results qRT-PCR showed that the expression level of miR-133b in the miR-133b mimic group was significantly higher than that in the negative control group(=26.219,=0.000).The expression level of miR-133b in the miR-133b inhibitor group was significantly lower than that in the negative control group(=6.738,=0.003).After 21,45,69,93,and 117 hours of transfection,the proliferation ability of CFs significantly decreased in the miR-133b mimic group but significantly increased in the miR-133b group(all <0.05,compared with the negative control group).After overexpression of miR-133b,the mRNA and protein levels of CTGF(=9.213,=0.001;=8.195,=0.001),α-SMA(=6.511, =0.003;=4.434,=0.011),collagenⅠ(=3.172,=0.034;=4.053,=0.015)and collagen Ⅲ(=6.404,=0.003;=5.319,=0.006)were significantly down-regulated.After the expression of miR-133b was knocked down,the mRNA and protein levels of CTGF(=9.439,=0.001;=14.100,=0.000),α-SMA(=4.519,=0.011;=4.377,=0.012),collagen Ⅰ(=5.966,=0.004;=5.514,=0.005)and collagen Ⅲ(=4.622,=0.010;=4.996,=0.008)were significantly increased.The relative luciferase activity of the cells co-transfected with miR-133b mimic and WT 3'UTR expression vector was significantly lower than that of the cells co-transfected with mimic control and WT 3'UTR expression vectors(=5.654,=0.005);however,there was no significant difference in relative luciferase activity between cells co-transfected with miR-133b mimic and MUT 3'UTR expression vectors and cells co-transfected with mimic control and MUT 3'UTR expression vectors(=0.380,=0.724).Conclusion miR-133b may affect the activation and proliferation of CFs by targeting CTGF and thus improve cardiac fibrosis.
Actins
;
metabolism
;
Cell Proliferation
;
Cells, Cultured
;
Collagen
;
metabolism
;
Connective Tissue Growth Factor
;
metabolism
;
Fibroblasts
;
cytology
;
Fibrosis
;
Humans
;
MicroRNAs
;
genetics
;
Myocardium
;
pathology
10.Rutaecarpine Inhibits Intimal Hyperplasia in A Balloon-Injured Rat Artery Model.
Yang XU ; Xiu-Ping CHEN ; Feng ZHANG ; Hua-Hua HOU ; Jing-Yi ZHANG ; Shu-Xian LIN ; An-Sheng SUN
Chinese journal of integrative medicine 2018;24(6):429-435
OBJECTIVETo investigate the effect and potential mechanisms of rutaecarpine (Rut) in a rat artery balloon-injury model.
METHODSThe intimal hyperplasia model was established by rubbing the endothelia with a balloon catheter in the common carotid artery (CCA) of rats. Fifty rats were randomly divided into five groups, ie. sham, model, Rut (25, 50 and 75 mg/kg) with 10 rats of each group. The rats were treated with or without Rut (25, 50, 75 mg/kg) by intragastric administration for 14 consecutive days following injury. The morphological changes of the intima were evaluated by hematoxylin-eosin staining. The expressions of proliferating cell nuclear antigen (PCNA) and smooth muscle (SM) α-actin in the ateries were assayed by immunohistochemical staining. The mRNA expressions of c-myc, extracellular signal-regulated kinase 2 (ERK2), MAPK phosphatase-1 (MKP-1) and endothelial nitric oxide synthase (eNOS) were determined by real-time reverse transcription-polymerase chain reaction. The protein expressions of MKP-1 and phosphorylated ERK2 (p-ERK2) were examined by Western blotting. The plasma contents of nitric oxide (NO) and cyclic guanosine 3',5'-monophosphate (cGMP) were also determined.
RESULTSCompared with the model group, Rut treatment significantly decreased intimal thickening and ameliorated endothelial injury (P<0.05 or P<0.01). The positive expression rate of PCNA was decreased, while the expression rate of SM α-actin obviously increased in the vascular wall after Rut (50 and 75 mg/kg) administration (P<0.05 or P<0.01). Furthermore, the mRNA expressions of c-myc, ERK2 and PCNA were downregulated while the expressions of eNOS and MKP-1 were upregulated (P<0.05 or P<0.01). The protein expressions of MKP-1 and the phosphorylation of ERK2 were upregulated and downregulated after Rut (50 and 75 mg/kg) administration (P<0.05 or P<0.01), respectively. In addition, Rut dramatically reversed balloon injury-induced decrease of NO and cGMP in the plasma (P<0.05 or P<0.01).
CONCLUSIONRut could inhibit the balloon injury-induced carotid intimal hyperplasia in rats, possibly mediated by promotion of NO production and inhibiting ERK2 signal transduction pathways.
Actins ; metabolism ; Animals ; Carotid Arteries ; drug effects ; metabolism ; pathology ; Carotid Artery Injuries ; drug therapy ; genetics ; pathology ; Cyclic GMP ; blood ; Disease Models, Animal ; Gene Expression Regulation ; drug effects ; Hyperplasia ; Indole Alkaloids ; pharmacology ; therapeutic use ; Male ; Nitric Oxide ; blood ; Phosphorylation ; drug effects ; Proliferating Cell Nuclear Antigen ; metabolism ; Quinazolines ; pharmacology ; therapeutic use ; RNA, Messenger ; genetics ; metabolism ; Rats, Sprague-Dawley ; Tunica Intima ; drug effects ; pathology

Result Analysis
Print
Save
E-mail