1.RNPS1 stabilizes NAT10 protein to facilitate translation in cancer via tRNA ac4C modification.
Xiaochen WANG ; Rongsong LING ; Yurong PENG ; Weiqiong QIU ; Demeng CHEN
International Journal of Oral Science 2024;16(1):6-6
Existing studies have underscored the pivotal role of N-acetyltransferase 10 (NAT10) in various cancers. However, the outcomes of protein-protein interactions between NAT10 and its protein partners in head and neck squamous cell carcinoma (HNSCC) remain unexplored. In this study, we identified a significant upregulation of RNA-binding protein with serine-rich domain 1 (RNPS1) in HNSCC, where RNPS1 inhibits the ubiquitination degradation of NAT10 by E3 ubiquitin ligase, zinc finger SWIM domain-containing protein 6 (ZSWIM6), through direct protein interaction, thereby promoting high NAT10 expression in HNSCC. This upregulated NAT10 stability mediates the enhancement of specific tRNA ac4C modifications, subsequently boosting the translation process of genes involved in pathways such as IL-6 signaling, IL-8 signaling, and PTEN signaling that play roles in regulating HNSCC malignant progression, ultimately influencing the survival and prognosis of HNSCC patients. Additionally, we pioneered the development of TRMC-seq, leading to the discovery of novel tRNA-ac4C modification sites, thereby providing a potent sequencing tool for tRNA-ac4C research. Our findings expand the repertoire of tRNA ac4C modifications and identify a role of tRNA ac4C in the regulation of mRNA translation in HNSCC.
Humans
;
DNA-Binding Proteins
;
Head and Neck Neoplasms/genetics*
;
N-Terminal Acetyltransferases
;
RNA, Transfer
;
Serine
;
Signal Transduction
;
Squamous Cell Carcinoma of Head and Neck
2.Diagnosis of a child with Say-Barber-Biesecker-Young-Simpson syndrome due to variant of KAT6B gene.
Jing CHEN ; Guanglei TONG ; Yuchen WANG ; Fuling YE ; Lei SHI ; Hong LI
Chinese Journal of Medical Genetics 2022;39(12):1370-1374
OBJECTIVE:
To analyze the genotype and clinical phenotype of a 3-month-old female infant featuring unresponsiveness.
METHODS:
The infant was subjected to genetic testing, and her clinical features were compared with syndromes associated with variants of the candidate gene.
RESULTS:
The patient has featured long fingers, long and overlapped toes, musk-like face, blepharophimosis, ptosis, and lacrimal duct anomaly. She was found to harbor a heterozygous de novo variant NM_012330.3: c.3040C>T (p.Gln1014*) in exon 16 of the KAT6B gene. Her clinical phenotype and genotype have both conformed to Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS).
CONCLUSION
The child was diagnosed with SBBYSS syndrome due to the c.3040C>T (p.Gln1014*) variant of the the KAT6B gene. Discovery of the unique features has expanded the phenotypic spectrum of this syndrome.
Female
;
Humans
;
Blepharophimosis/genetics*
;
Blepharoptosis
;
Genotype
;
Histone Acetyltransferases
;
Infant
3.Analysis of a child with mental retardation due to a de novo variant of the KAT6A gene.
Zengguo REN ; Xingxing LEI ; Mei ZENG ; Ke YANG ; Qiannan GUO ; Shujie YU ; Guiyu LOU ; Bing ZHANG ; Li WANG
Chinese Journal of Medical Genetics 2022;39(12):1385-1389
OBJECTIVE:
To explore the genetic etiology for a child featuring mental retardation and speech delay.
METHODS:
Clinical data of the child was collected. DNA was extracted from peripheral blood samples of the child and members of his pedigree. Whole exome sequencing was carried out for the child, and candidate variants were verified by Sanger sequencing. Prenatal diagnosis was provided for his mother upon her subsequent pregnancy.
RESULTS:
The child has mainly featured mental retardation, speech delay, ptosis, strabismus, photophobia, hyperactivity, and irritability. Whole exome sequencing revealed that he has harbored a pathogenic heterozygous variant of the KAT6A gene, namely c.5314dupA (p.Ser1772fs*20), which was not detected in either of his parents. The child was diagnosed with Arboleda-Tham syndrome. The child was also found to harbor a hemizygous c.56T>G (p.Leu19Trp) variant of the AIFM1 gene, for which his mother was heterozygous and his phenotypically normal maternal grandfather was hemizygous. Pathogenicity was excluded. Prenatal diagnosis has excluded the c.5314dupA variant of the KAT6A gene in the fetus.
CONCLUSION
The heterozygous c.5314dupA (p.Ser1772fs*20) variant of the KAT6A gene probably underlay the Arboleda-Tham syndrome in this child. Above finding has enabled genetic counseling and prenatal diagnosis for this pedigree.
Child
;
Humans
;
Male
;
Pregnancy
;
Histone Acetyltransferases
;
Intellectual Disability/genetics*
;
Language Development Disorders
;
Pedigree
4.MBOAT1 homozygous missense variant causes nonobstructive azoospermia.
Yang-Yang WAN ; Lan GUO ; Yao YAO ; Xiao-Yun SHI ; Hui JIANG ; Bo XU ; Juan HUA ; Xian-Sheng ZHANG
Asian Journal of Andrology 2022;24(2):186-190
Nonobstructive azoospermia (NOA) is a common cause of infertility and is defined as the complete absence of sperm in ejaculation due to defective spermatogenesis. The aim of this study was to identify the genetic etiology of NOA in an infertile male from a Chinese consanguineous family. A homozygous missense variant of the membrane-bound O-acyltransferase domain-containing 1 (MBOAT1) gene (c.770C>T, p.Thr257Met) was found by whole-exome sequencing (WES). Bioinformatic analysis also showed that this variant was a pathogenic variant and that the amino acid residue in MBOAT1 was highly conserved in mammals. Quantitative polymerase chain reaction (Q-PCR) analysis showed that the mRNA level of MBOAT1 in the patient was 22.0% lower than that in his father. Furthermore, we screened variants of MBOAT1 in a broader population and found an additional homozygous variant of the MBOAT1 gene in 123 infertile men. Our data identified homozygous variants of the MBOAT1 gene associated with male infertility. This study will provide new insights for researchers to understand the molecular mechanisms of male infertility and will help clinicians make accurate diagnoses.
Acetyltransferases/genetics*
;
Animals
;
Azoospermia/genetics*
;
Cell Cycle Proteins/genetics*
;
Humans
;
Infertility, Male/genetics*
;
Male
;
Mammals
;
Membrane Proteins/genetics*
;
Mutation
5.Identification of a novel missense variant of the KAT6B gene in a child with Say-Barber-Biesecker-Young-Simpson syndrome.
Ruohao WU ; Wenting TANG ; Kunyin QIU ; Yu LI ; Zhanwen HE
Chinese Journal of Medical Genetics 2021;38(6):561-564
OBJECTIVE:
To explore the genetic basis for a child suspected for Say-Barber-Biesecker-Young-Simpson syndrome.
METHODS:
Genomic DNA was extracted from peripheral blood samples of the child and her parents. Whole exome sequencing was carried out for the proband. Suspected variants were validated by Sanger sequencing. The impact of the variants was predicted by bioinformatic analysis.
RESULTS:
The child was found to harbor a de novo missense variant c.2623C>T (p.Asp875Tyr) in exon 13 of the KAT6B gene. The variant was previously unreported, and was not recorded in the major allele frequency database and predicted to be pathogenic based on PolyPhen-2, MutationTaster and PROVEAN analysis. As predicted by UCSF chimera and CASTp software, the variant can severely impact the substrate-binding pocket of histone acetyltransferase, resulting in loss of its enzymatic activity. Based on standards and guidelines by the American College of Medical Genetics and Genomics, the variant was classified to be likely pathogenic (PS2+PM2+PP3).
CONCLUSION
The child's condition may be attributed to the de novo missense c.2623C>T (p.Asp875Tyr) variant of the KAT6B gene.
Blepharophimosis
;
Child
;
Congenital Hypothyroidism
;
Facies
;
Female
;
Heart Defects, Congenital
;
Histone Acetyltransferases/genetics*
;
Humans
;
Intellectual Disability
;
Joint Instability
;
Mutation
;
Phenotype
6.Transgenesis of Drosophila melanogaster with an Elovl5 gene enables the production of longer-chain fatty acids.
Lanchen WANG ; Qinmin TANG ; Yufeng HE ; Ying WANG ; Shisai YANG ; Guiming ZHU
Chinese Journal of Biotechnology 2020;36(10):2171-2180
In most insects, polyunsaturated fatty acids (PUFAs) are mainly polyunsaturated fatty acids with a carbon-chain length less than 18 carbon atoms, hardly any long-chain polyunsaturated fatty acids such as C20 and C22 that are more valuable and bioactive. This study, by using Drosophila melanogaster (Fruit fly) as a model organism, optimized the Δ6-fatty acid elongase enzyme Elovl5 gene from mice and transferred it to fruit flies for expression. Vectors containing Elovl5 gene were successfully injected into drosophila embryo through the microscopic injection. There were enhanced green fluorescent proteins expressed in the whole developmental stage of Drosophila be means of fluorescence microscope. At the same time, expression of Elovl5 gene significantly contributed to the transformation of fruit flies C18-polyunsaturated fatty acids in the body towards the biosynthesis of longer-chain polyunsaturated fatty acids. The transgenic fruit fly model rich in long-chain polyunsaturated fatty acids such as C20 and C22 were obtained, providing a basis for further research on biosynthesis of polyunsaturated fatty acids in fruit flies.
Acetyltransferases/genetics*
;
Animals
;
Drosophila melanogaster/genetics*
;
Fatty Acid Elongases/metabolism*
;
Fatty Acids/genetics*
;
Gene Transfer Techniques
;
Mice
7.A case of SBBYSS syndrome caused by KAT6B gene variant.
Nan LYU ; Qing SHANG ; Jingjie LI ; Caiyun MA ; Dongxiao LI
Chinese Journal of Medical Genetics 2019;36(7):727-730
OBJECTIVE:
To analyze the clinical and molecular genetics features of a family affected with Say-Barber-Biesecker-Young-Simpson syndrome (SBBYSS).
METHODS:
High-throughput sequencing was used to detect copy number variations (CNVs) and pathogenic variant within the whole exome of the affected child.
RESULTS:
No pathogenic CNV was found in the child, while exome sequencing identified a heterozygous c.3367_c.3370delAGAA (p.Arg1123Argfs*6) frameshifting variant in the exon 16 of the KAT6B gene. The same variant was not found in either parent.
CONCLUSION
The c.3367_c.3370delAGAA (p.R1123Rfs*6) probably underlies the disease in the affected child. Above finding has facilitated genetic counseling and prenatal diagnosis for the family.
Blepharophimosis
;
genetics
;
Child
;
Congenital Hypothyroidism
;
genetics
;
DNA Copy Number Variations
;
Facies
;
Female
;
Heart Defects, Congenital
;
genetics
;
Histone Acetyltransferases
;
genetics
;
Humans
;
Intellectual Disability
;
genetics
;
Joint Instability
;
genetics
;
Mutation
;
Phenotype
;
Pregnancy
8.Genetic Variants in the ELOVL5 but not ELOVL2 Gene Associated with Polyunsaturated Fatty Acids in Han Chinese Breast Milk.
Xiang LI ; Zhen Wei GAN ; Zhen DING ; Yi Xia WU ; Xue Yan CHEN ; Hui Min TIAN ; Guo Liang LIU ; Ye Tong YANG ; Lin XIE
Biomedical and Environmental Sciences 2017;30(1):64-67
The present study was designed to examine the contributions of the fatty acid elongase (ELOVL) gene polymorphisms to the levels of polyunsaturated fatty acids (PUFAs) in breast milk. Two hundred and nine healthy Han Chinese mothers were included in the study. Carriers of minor alleles of SNPs (rs2397142 and rs9357760) in ELOVL5 were associated with higher levels of linoleic acid (LA), dihomo-γ-linolenic acid (DGLA), arachidonic acid (AA), docosatetraenoic acid (DTA), docosahexenoic acid (DHA), while in rs209512 of ELOVL5 the carriers of minor alleles had lower levels of DTA compared to major homozygote alleles (P ranged from 0.004-0.046), and genetically explained variability ranged from 3.2% for eicosapentaenoic acid (EPA) to 6.0% for LA. Our findings demonstrated that common variation in ELOVL5 gene encoding rate-limiting enzymes in the metabolism of PUFAs contribute to the PUFAs in breast milk.
Acetyltransferases
;
genetics
;
Asian Continental Ancestry Group
;
genetics
;
China
;
Fatty Acids, Unsaturated
;
genetics
;
Female
;
Humans
;
Milk, Human
;
chemistry
;
Polymorphism, Single Nucleotide
9.E3 ligase UHRF2 stabilizes the acetyltransferase TIP60 and regulates H3K9ac and H3K14ac via RING finger domain.
Shengyuan ZENG ; Yangyang WANG ; Ting ZHANG ; Lu BAI ; Yalan WANG ; Changzhu DUAN
Protein & Cell 2017;8(3):202-218
UHRF2 is a ubiquitin-protein ligase E3 that regulates cell cycle, genomic stability and epigenetics. We conducted a co-immunoprecipitation assay and found that TIP60 and HDAC1 interact with UHRF2. We previously demonstrated that UHRF2 regulated H3K9ac and H3K14ac differentially in normal and cancer cells. However, the accurate signal transduction mechanisms were not clear. In this study, we found that TIP60 acted downstream of UHRF2 to regulate H3K9ac and H3K14ac expression. TIP60 is stabilized in normal cells by UHRF2 ubiquitination. However, TIP60 is destabilized in cancer cells. Depletion or inhibition of TIP60 disrupts the regulatory relationship between UHRF2, H3K9ac and H3K14ac. In summary, the findings suggest that UHRF2 mediated the post-translational modification of histones and the initiation and progression of cancer.
Cell Line
;
Histone Acetyltransferases
;
genetics
;
metabolism
;
Histones
;
genetics
;
metabolism
;
Humans
;
Lysine Acetyltransferase 5
;
Neoplasm Proteins
;
genetics
;
metabolism
;
Neoplasms
;
genetics
;
metabolism
;
RING Finger Domains
;
Ubiquitin-Protein Ligases
;
genetics
;
metabolism
;
Ubiquitination
10.Temporal regulation of transcription factor Mef2c by histone acetylases during cardiogenesis.
Chang PENG ; Wei-Hua ZHANG ; Bo PAN ; Wen-Qun GAO ; Jie TIAN
Chinese Journal of Contemporary Pediatrics 2014;16(4):418-423
OBJECTIVETo observe the temporal modification of transcription factor Mef2c by histone acetylases (HATs) P300, PCAF, and SRC1 during cardiogenesis and to provide a basis for investigating the pathogenesis of congenital heart disease.
METHODSThe normal heart tissues from embryonic mice (embryonic days 14.5 and 16.5) and neonatal mice (postnatal days 0.5 and 7) were collected. The binding of P300, PCAF, and SRC1 to Mef2c gene and level of histone H3 acetylation in the promoter region of Mef2c were evaluated by chromatin immunoprecipitation assays. Meanwhile, real-time PCR was used to measure the mRNA expression of Mef2c.
RESULTSP300, PCAF, SRC1 were involved in histone acetylation in the promoter region of Mef2c during cardiogenesis in mice, and binding of P300, PCAF, and SRC1 to the promoter of Mef2c varied significantly in different stages of cardiogenesis (P<0.01). The level of histone H3 acetylation and mRNA expression of Mef2c in the promoter region of Mef2c also varied significantly in different stages of cardiac development (P<0.01). The levels of acetylated H3, Mef2c mRNA, and HATs (P300, PCAF, SRC1) changed over time. They were highest on embryonic day 14.5 (P<0.01), decreased gradually with cardiac development, and were maintained at low levels after birth.
CONCLUSIONSThe mRNA expression of Mef2c varies during cardiogenesis in mice, which indicates that Mef2c plays an important role in the process of cardiac development. Meanwhile, histone acetylation in the promoter region of Mef2c is regulated temporally by HATs P300, PCAF, and SRC1.
Animals ; Female ; Gene Expression Regulation, Developmental ; Heart ; embryology ; Histone Acetyltransferases ; physiology ; MEF2 Transcription Factors ; genetics ; physiology ; Male ; Mice ; Promoter Regions, Genetic ; RNA, Messenger ; analysis

Result Analysis
Print
Save
E-mail