1.Antihypertensive effect of ethanol extracts of Aralia elata in spontaneously hypertensive rats.
Ju Youn JIN ; Eun Hye PARK ; Yoon A JEON ; Young Jae LEE
Korean Journal of Veterinary Research 2017;57(3):181-187
Antihypertensive effects of ethanol extracts of Aralia elata (Miq.) Seem. (AE) were investigated in spontaneously hypertensive rats (SHR). SHR aged 14 weeks were treated for 8 weeks with AE (10 or 50 mg/kg/day) or amlodipine besylate (Am; 10 mg/kg/day) orally. Hypertension results in injury to several organs and can produce a significant increase in malondialdehyde (MDA) content as a result of lipid peroxidation and endothelial dysfunction. In this study, oral administration of AE and Am significantly reduced systolic blood pressure, organ weight index, and MDA content in tissues but increased significantly the plasma nitrite and nitrate concentrations. The endothelium-dependent relaxant activities of acetylcholine (10⁻¹⁰–10⁻³ M) in norepinephrine (NE)-precontracted aorta were increased in AE- and Am-treated rats. Particularly strong endothelium-dependent relaxant activities were observed in AE-treated (50 mg/kg) rats. The endothelium-independent relaxant activities of sodium nitroprusside (10⁻¹⁰–10⁻³ M) in NE-precontracted aorta were not changed. The results of this study suggest that AE has both antihypertensive and end-organ protective effects in SHR.
Acetylcholine
;
Administration, Oral
;
Amlodipine
;
Animals
;
Aorta
;
Aralia*
;
Blood Pressure
;
Ethanol*
;
Hypertension
;
Lipid Peroxidation
;
Malondialdehyde
;
Nitroprusside
;
Norepinephrine
;
Organ Size
;
Plasma
;
Rats
;
Rats, Inbred SHR*
2.Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex.
Da Un JEONG ; Jin Hwan OH ; Ji Eun LEE ; Jihyeon LEE ; Zang Hee CHO ; Jin Woo CHANG ; Won Seok CHANG
Yonsei Medical Journal 2016;57(1):165-172
PURPOSE: Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. MATERIALS AND METHODS: We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by 18F-2-fluoro-2-deoxyglucose positron emission tomography. RESULTS: During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. CONCLUSION: Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.
Acetylcholine/metabolism
;
Alzheimer Disease
;
Animals
;
Antibodies, Monoclonal/*pharmacology
;
Basal Forebrain/*drug effects/metabolism
;
Cholinergic Agents/administration & dosage/*pharmacology
;
Cholinergic Neurons/*drug effects/metabolism
;
Fluorodeoxyglucose F18
;
GABAergic Neurons/*drug effects/metabolism
;
Glucose/*metabolism
;
Gyrus Cinguli/*drug effects/metabolism
;
Humans
;
Injections
;
Maze Learning
;
Motor Activity/physiology
;
Positron-Emission Tomography
;
Rats
;
Ribosome Inactivating Proteins, Type 1/*pharmacology
3.Effect of synchronous perfusion of NaN3 in changes in content of cholinergic neurotransmitter in medial prefrontal cortex and hippocampal extra-cellular fluid.
Mei-Yu ZHANG ; Dan-Dan SUN ; Yang LIU ; Yue CUI ; Xiao-Liang ZHAO ; Ying ZHANG ; Zhi-Guo WANG ; Dan-Qiao WANG
China Journal of Chinese Materia Medica 2014;39(3):488-492
OBJECTIVETo observe the effect of synchronous perfusion of specific respiratory chain complex IV inhibitor sodium azide (NaN3) in brain on rat ventromedial prefrontal cortex (mPFC) and acetylcholine (ACh) and choline (Ch) contents in hippocampal extra-cellular fluid, and establish the AD rat model induced by mitochondrial acute injury.
METHODThe synchronous dual-probe dual-channel brain microdialysis sampling technology was applied to synchronously perfuse modified Ringer's solution containing NaN3 (50 micro mol L-1) and neostigmine (2 micro mol L-1) into mPFC and hippocampus of conscious, freely moving normal rats, and continuously collect dialysates from different encephalic areas. Dynamic contents of ACh and Ch were determined by high performance liquid chromatography-post-column immobilized enzyme reactor-electrochemical process.
RESULTACh and Ch contents in mPFC extracellular fluid of normal rats were higher than that in hippocampus. During the process of perfusion, NaN3 could significantly reduce ACh in mPFC/hippocampal extra-cellular fluid, but remarkably increase Ch, and constantly inhibit the recovery of ACh and Ch contents in mPFC/hippocampus.
CONCLUSIONThe synchronous perfusion of NaN3in rat mPFC and hippocampus can injure functions of the cholinergic nerve projection area, and cause the acute AD model with ACh and Ch metabolic disorders. This model can be used in pathogenetic and pharmacological studies.
Acetylcholine ; metabolism ; Animals ; Choline ; metabolism ; Extracellular Fluid ; drug effects ; metabolism ; Hippocampus ; cytology ; Male ; Neurotransmitter Agents ; metabolism ; Perfusion ; Prefrontal Cortex ; cytology ; Rats ; Rats, Sprague-Dawley ; Sodium Azide ; administration & dosage ; pharmacology ; Time Factors
4.Protective effects of Acanthopanax divaricatus extract in mouse models of Alzheimer's disease.
Ji Jing YAN ; Won Gyun AHN ; Jun Sub JUNG ; Hee Sung KIM ; Md Ashraful HASAN ; Dong Keun SONG
Nutrition Research and Practice 2014;8(4):386-390
BACKGROUND: Acanthopanax divaricatus var. albeofructus (ADA) extract has been reported to have anti-oxidant, immunomodulatory, and anti-mutagenic activity. MATERIALS/METHODS: We investigated the effects of ADA extract on two mouse models of Alzheimer's disease (AD); intracerebroventricular injection of beta-amyloid peptide (Abeta) and amyloid precursor protein/presenilin 1 (APP/PS1)-transgenic mice. RESULTS: Intra-gastric administration of ADA stem extract (0.25 g/kg, every 12 hrs started from one day prior to injection of Abeta1-42 until evaluation) effectively blocked Abeta1-42-induced impairment in passive avoidance performance, and Abeta1-42-induced increase in immunoreactivities of glial fibrillary acidic protein and interleukin (IL)-1alpha in the hippocampus. In addition, it alleviated the Abeta1-42-induced decrease in acetylcholine and increase in malondialdehyde levels in the cortex. In APP/PS1-transgenic mice, chronic oral administration of ADA stem extract (0.1 or 0.5 g/kg/day for six months from the age of six to 12 months) resulted in significantly enhanced performance of the novel-object recognition task, and reduced amyloid deposition and IL-1beta in the brain. CONCLUSIONS: The results of this study suggest that ADA stem extract may be useful for prevention and treatment of AD.
Eleutherococcus*
;
Acetylcholine
;
Administration, Oral
;
Alzheimer Disease*
;
Amyloid
;
Animals
;
Brain
;
Glial Fibrillary Acidic Protein
;
Hippocampus
;
Interleukins
;
Malondialdehyde
;
Mice*
;
Plaque, Amyloid
5.Protective effects of Acanthopanax divaricatus extract in mouse models of Alzheimer's disease.
Ji Jing YAN ; Won Gyun AHN ; Jun Sub JUNG ; Hee Sung KIM ; Md Ashraful HASAN ; Dong Keun SONG
Nutrition Research and Practice 2014;8(4):386-390
BACKGROUND: Acanthopanax divaricatus var. albeofructus (ADA) extract has been reported to have anti-oxidant, immunomodulatory, and anti-mutagenic activity. MATERIALS/METHODS: We investigated the effects of ADA extract on two mouse models of Alzheimer's disease (AD); intracerebroventricular injection of beta-amyloid peptide (Abeta) and amyloid precursor protein/presenilin 1 (APP/PS1)-transgenic mice. RESULTS: Intra-gastric administration of ADA stem extract (0.25 g/kg, every 12 hrs started from one day prior to injection of Abeta1-42 until evaluation) effectively blocked Abeta1-42-induced impairment in passive avoidance performance, and Abeta1-42-induced increase in immunoreactivities of glial fibrillary acidic protein and interleukin (IL)-1alpha in the hippocampus. In addition, it alleviated the Abeta1-42-induced decrease in acetylcholine and increase in malondialdehyde levels in the cortex. In APP/PS1-transgenic mice, chronic oral administration of ADA stem extract (0.1 or 0.5 g/kg/day for six months from the age of six to 12 months) resulted in significantly enhanced performance of the novel-object recognition task, and reduced amyloid deposition and IL-1beta in the brain. CONCLUSIONS: The results of this study suggest that ADA stem extract may be useful for prevention and treatment of AD.
Eleutherococcus*
;
Acetylcholine
;
Administration, Oral
;
Alzheimer Disease*
;
Amyloid
;
Animals
;
Brain
;
Glial Fibrillary Acidic Protein
;
Hippocampus
;
Interleukins
;
Malondialdehyde
;
Mice*
;
Plaque, Amyloid
6.HMG-CoA Reductase Inhibitor Improves Endothelial Dysfunction in Spontaneous Hypertensive Rats Via Down-regulation of Caveolin-1 and Activation of Endothelial Nitric Oxide Synthase.
Jung Won SUH ; Dong Ju CHOI ; Hyuk Jae CHANG ; Young Seok CHO ; Tae Jin YOUN ; In Ho CHAE ; Kwang Il KIM ; Cheol Ho KIM ; Hyo soo KIM ; Buyng Hee OH ; Young Bae PARK
Journal of Korean Medical Science 2010;25(1):16-23
Hypertension is associated with endothelial dysfunction and increased cardiovascular risk. Caveolin-1 regulates nitric oxide (NO) signaling by modulating endothelial nitric oxide synthase (eNOS). The purpose of this study was to examine whether HMG-CoA reductase inhibitor improves impaired endothelial function of the aorta in spontaneous hypertensive rat (SHR) and to determine the underlying mechanisms involved. Eight-week-old male SHR were assigned to either a control group (CON, n=11) or a rosuvastatin group (ROS, n=12), rosuvastatin (10 mg/kg/day) administered for eight weeks. Abdominal aortic rings were prepared and responses to acetylcholine (10-9-10-4 M) were determined in vitro. To evaluate the potential role of NO and caveolin-1, we examined the plasma activity of NOx, eNOS, phosphorylated-eNOS and expression of caveolin-1. The relaxation in response to acetylcholine was significantly enhanced in ROS compared to CON. Expression of eNOS RNA was unchanged, whereas NOx level and phosphorylated-eNOS at serine-1177 was increased accompanied with depressed level of caveolin-1 in ROS. We conclude that 3-Hydroxy-3-methylglutaryl Coenzyme-A (HMG-CoA) reductase inhibitor can improve impaired endothelial dysfunction in SHR, and its underlying mechanisms are associated with increased NO production. Furthermore, HMG-CoA reductase inhibitor can activate the eNOS by phosphorylation related to decreased caveolin-1 abundance. These results imply the therapeutic strategies for the high blood pressure-associated endothelial dysfunction through modifying caveolin status.
Acetylcholine/metabolism
;
Animals
;
Aorta/metabolism/physiopathology
;
Blood Pressure/drug effects
;
Caveolin 1/*metabolism
;
Down-Regulation
;
Drug Administration Schedule
;
Endothelium, Vascular/*drug effects/physiopathology
;
Fluorobenzenes/administration & dosage/*pharmacology
;
Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage/*pharmacology
;
Hypertension/enzymology/metabolism/*physiopathology
;
Male
;
Nitric Oxide/blood
;
Nitric Oxide Synthase Type III/*metabolism
;
Phosphorylation
;
Pyrimidines/administration & dosage/*pharmacology
;
Rats
;
Rats, Inbred SHR
;
Sulfonamides/administration & dosage/*pharmacology
;
Vasodilation/drug effects
7.An increase in intracelluar free calcium ions modulated by cholinergic receptors in rat facial nucleus.
Da-wei SUN ; Rui ZHOU ; Na LI ; Qiu-gui ZHANG ; Fu-gao ZHU
Chinese Medical Journal 2009;122(9):1049-1055
BACKGROUNDCa(2+) in the central nervous system plays important roles in brain physiology, including neuronal survival and regeneration in rats with injured facial motoneurons. The present research was to study the modulations of intracellular free Ca(2+) concentrations by cholinergic receptors in rat facial nucleus, and the mechanisms of the modulations.
METHODSThe fluorescence intensity of facial nucleus in Fluo-3 AM loaded acute brainstem slices was detected by applying intracellular free Ca(2+) measurement technique via confocal laser scanning microscope. The changes of fluorescence intensity of facial nucleus indicate the average changes of intracellular free Ca(2+) levels of the neurons.
RESULTSAcetylcholine was effective at increasing the fluorescence intensity of facial nucleus. Muscarine chloride induced a marked increase of fluorescence intensity in a concentration dependent fashion. The enhancement of fluorescence intensity by muscarine chloride was significantly reduced by thapsigargin (depletor of intracellular Ca(2+) store; P < 0.01), rather than Ca(2+) free artifical cerebrospinal fluid or EGTA (free Ca(2+) chelator; P > 0.05). And the increase of fluorescence intensity was also significantly inhibited by pirenzepine (M(1) subtype selective antagonist; P < 0.01) and 4-DAMP (M(3) subtype selective antagonist; P < 0.01). In addition, fluorescence intensity was markedly increased by nicotine. The enhancement of fluorescence intensity by nicotine was significantly reduced by EGTA, nifedipine (L-type voltage-gated Ca(2+) channel blocker), dihydro-beta-erythroidine (alpha4beta2 subtype selective antagonist), and in Ca(2+) free artificial cerebrospinal fluid (P < 0.01), but not in the presence of mibefradil (M-type voltage-gated Ca(2+) channel blocker) or thapsigargin (P > 0.05).
CONCLUSIONSThe data provide the evidence that muscarinic receptors may induce the increase of intracellular free Ca(2+) levels through the Ca(2+) release of intracellular Ca(2+) stores, in a manner related to M(1) and M(3) subtypes of muscarinic receptors in rat facial nucleus. Nicotine may increase intracellular free Ca(2+) concentrations via the influx of extracellular Ca(2+)+ mainly across L-type voltage-gated Ca(2+) channels, in a manner related to the alpha4beta2 subtype of nicotinic receptors.
Acetylcholine ; pharmacology ; Aniline Compounds ; administration & dosage ; Animals ; Brain Stem ; cytology ; drug effects ; metabolism ; Calcium ; metabolism ; Diamines ; pharmacology ; Facial Nerve ; cytology ; Female ; Fluorescent Dyes ; administration & dosage ; In Vitro Techniques ; Male ; Microscopy, Confocal ; Motor Neurons ; drug effects ; metabolism ; Muscarinic Agonists ; pharmacology ; Nicotine ; pharmacology ; Nicotinic Agonists ; pharmacology ; Piperidines ; pharmacology ; Pirenzepine ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptors, Cholinergic ; metabolism ; Receptors, Muscarinic ; metabolism ; Receptors, Nicotinic ; metabolism ; Tropicamide ; pharmacology ; Xanthenes ; administration & dosage
8.Mechanism of conditioned immune response in curing bronchial asthma in mice.
Hua-bing LI ; Xiu-zhen HAN ; Yi-zhen FENG ; Jin-rong WANG ; Yan SUN ; Li-feng SUN ; Ying-chun YI ; Zhi-peng LI
Chinese Journal of Pediatrics 2008;46(12):924-929
OBJECTIVETo understand the mechanism of effect of conditioned immune response in curing bronchial asthma.
METHODSAn experimental asthma modal was produced on healthy BALB/C mice (female, 4 - 6 weeks old) by sensitization and stimulation with ovalbumin (OV A). Totally 105 mice were divided into 7 groups randomly with 15 in each and treated differently: in group CIR(1), noise was used as conditioned stimulus (CS) and budesonide and salbutamol as unconditioned stimulus (UCS) respectively, a conditioned immune response model of mice with asthma was established by the combination of CS and UCS 7 times (7 days), then the mice were given CS only, and the combination were given once a week for 20 weeks. In group CIR(2) saccharin (SAC) was taken as CS, and the other treatments were the same as the group CIR(1). In the group of conventional therapy, the mice were given inhalation of nebulized budesonide and salbutamol only for 20 weeks. In the group of lower dose conventional therapy, the mice were given nebulized inhalation of budesonide and salbutamol for the first 7 days, then once a week for 20 weeks. In the noise group the mice were given noise only everyday for 20 weeks. In SAC group the mice were treated with SAC only everyday for 20 weeks. In the blank control group the mice were treated with placebo for 20 weeks. The mice in all the groups were stimulated with OVA once a day. The mice in the healthy control group were given PBS inhalation for 20 weeks. After 20 weeks therapy, the bronchoalveolar lavage fluid (BALF) was taken for eosinophils (EOS) counting. The spleens were taken to obtain CD4(+)T lymphocytes and the expression of neuronal acetylcholine receptor alpha 7 (nAChRalpha7), IL-4, IFN-gamma and IL-17 were detected by flow cytometry.
RESULTS(1) The percent of EOS of groups CIR(1), CIR(2), conventional therapy and healthy control was much lower than that of blank control (P < 0.01), and there was no significant difference among groups CIR(1), CIR(2) and conventional therapy (P > 0.05). (2) The expression of nAChRalpha7, IL-4 and IL-17 of groups CIR(1), CIR(2), conventional therapy and healthy control was much lower than that in blank control group, IFN-gamma was much higher (P < 0.01), and no significant difference was found among groups CIR(1), CIR(2) and conventional therapy (P > 0.05). There was a positive correlation between nAChRalpha7 and IL-4 (r = 0.76, P < 0.01), nAChRalpha7 and IL-17 (r = 0.46, P < 0.01). There was a negative correlation between nAChRalpha7 and IFN-gamma (r = 0.69, P < 0.01). (3) In the groups treated with lower dose of conventional therapy, noise, SAC and blank control, the epithelial tissue of airway were much thicker, the lumens were much narrower, and inflammatory cells and collagen fibers were much more than in the healthy control group, and after therapy, the inflammation in groups CIR(1), CIR(2) and conventional therapy was significantly improved.
CONCLUSIONThe conditioned immune response models established by both noise and SAC as CS and budesonide and salbutamol as UCS can downregulate nAChRalpha7 on CD4(+)T lymphocytes, regulate the function of CD4(+)T lymphocytes, and achieve the same therapeutic efficacy in treatment of asthma.
Administration, Inhalation ; Animals ; Asthma ; drug therapy ; immunology ; Budesonide ; therapeutic use ; CD4-Positive T-Lymphocytes ; immunology ; metabolism ; Female ; Gene Expression Regulation ; Mice ; Mice, Inbred BALB C ; Receptors, Nicotinic ; metabolism ; alpha7 Nicotinic Acetylcholine Receptor
9.Effects of ligustrazine on extracellular acetylcholine levels in rat brain dialysate.
Yun-Feng LÜ ; Xin HU ; Kai-Shun BI
Acta Pharmaceutica Sinica 2008;43(11):1128-1133
Using brain microdialysis and LC-MS/MS to detect acetylcholine in rat brain to investigate the effects of ligustrazine. A liquid chromatography-tandem mass spectrometry method has been developed and validated for the determination of acetylcholine in rat brain dialysate sampling by microdialysis. The results indicated that ligustrazine administration by subcutaneous injection significantly increased Ach release in rat medial prefrontal cortex and nucleus accumbens in a dose-related manner. The drug' s effect on Ach release in rat brain could be directly detected by microdialysis combined with HPLC-MS/MS and this method is selective and sensitive.
Acetylcholine
;
metabolism
;
Animals
;
Chromatography, High Pressure Liquid
;
Dose-Response Relationship, Drug
;
Ligusticum
;
chemistry
;
Male
;
Microdialysis
;
Nucleus Accumbens
;
metabolism
;
Plants, Medicinal
;
chemistry
;
Prefrontal Cortex
;
metabolism
;
Pyrazines
;
administration & dosage
;
isolation & purification
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Spectrometry, Mass, Electrospray Ionization
;
Tandem Mass Spectrometry
10.Effect of acetylcholine on pain-related electric activities in hippocampal CA1 area of normal and morphinistic rats.
Yu XIAO ; Xiao-Fang YANG ; Man-Ying XU
Neuroscience Bulletin 2007;23(6):323-328
OBJECTIVETo examine the effect of acetylcholine (ACh) on the electric activities of pain-excitation neurons (PEN) and pain-inhibitation neurons (PIN) in the hippocampal CA1 area of normal rats or morphinistic rats, and to explore the role of ACh in regulation of pain perception in CA1 area under normal condition and morphine addiction.
METHODSThe trains of electric impulses applied to sciatic nerve were set as noxious stimulation. The discharges of PEN and PIN in the CA1 area were recorded extracellularly by glass microelectrode. We observed the influence of intracerebroventricular (i.c.v.) injection of ACh and atropine on the noxious stimulation-evoked activities of PEN and PIN in the CA1 area.
RESULTSNoxious stimulation enhanced the electric activity of PEN and depressed that of PIN in the CA1 area of both normal and addiction rats. In normal rats, ACh decrease the pain-evoked discharge frequency of PEN, while increased the frequency of PIN. These effects reached the peak value at 4 min after injection of ACh. In morphinistic rats, ACh also inhibited the PEN electric activity and potentialized the PIN electric activity, but the maximum effect appeared at 6 min after administration. The ACh-induced responses were significantly blocked by muscarinic receptor antagonist atropine.
CONCLUSIONCholinergic neurons and muscarinic receptors in the hippocampal CA1 area are involved in the processing of nociceptive information and they may play an analgesia role in pain modulation. Morphine addiction attenuated the sensitivity of pain-related neurons to the noxious information.
Acetylcholine ; administration & dosage ; metabolism ; Adaptation, Physiological ; drug effects ; physiology ; Animals ; Electric Stimulation ; Evoked Potentials ; physiology ; Female ; Hippocampus ; cytology ; metabolism ; Injections, Intraventricular ; Male ; Morphine ; pharmacology ; Morphine Dependence ; metabolism ; Narcotics ; pharmacology ; Neuronal Plasticity ; physiology ; Neurons ; drug effects ; physiology ; Pain ; metabolism ; Pain Threshold ; physiology ; Rats ; Rats, Wistar ; Receptors, Cholinergic ; drug effects ; metabolism ; Sciatic Nerve ; physiopathology ; Signal Transduction ; physiology

Result Analysis
Print
Save
E-mail