1.A CRISPR/dCpf1-based transcriptional repression system for Gluconobacter oxydans.
Yutong YANG ; Ning LI ; Jingwen ZHOU ; Jian CHEN
Chinese Journal of Biotechnology 2022;38(2):719-736
Gluconobacter oxydans are widely used in industrial due to its ability of oxidizing carbohydrate rapidly. However, the limited gene manipulation methods and less of efficient gene editing tools impose restrictions on its application in industrial production. In recent years, the clustered regularly interspaced short palindromic repeats (CRISPR) system has been widely used in genome editing and transcriptional regulation which improves the efficiency of genome editing greatly. Here we constructed a CRISPR/dCpf1-mediated gene transcriptional repression system, the expression of a nuclease inactivation Cpf1 protein (dCpf1) in Gluconobacter oxydans together with a 19 nt direct repeats showed effective repression in gene transcription. This system in single gene repression had strong effect and the relative repression level had been increased to 97.9%. While it could be applied in multiplex gene repression which showed strong repression ability at the same time. Furthermore, this system was used in the metabolic pathway of L-sorbose and the regulatory of respiratory chain. The development of CRISPR transcriptional repression system effectively covered the shortage of current gene regulation methods in G. oxydans and provided an efficient gene manipulation tool for metabolic engineering modification in G. oxydans.
CRISPR-Cas Systems/genetics*
;
Clustered Regularly Interspaced Short Palindromic Repeats/genetics*
;
Gene Editing
;
Gene Expression
;
Gluconobacter oxydans/genetics*
;
Metabolic Engineering
2.Regulating the structure of bacterial cellulose by altering the expression of bcsD using CRISPR/dCas9.
Longhui HUANG ; Xuejing LI ; Xuewen SUN ; Xu WANG ; Yitong WANG ; Shiru JIA ; Cheng ZHONG
Chinese Journal of Biotechnology 2022;38(2):772-779
Gluconacetobacter xylinus is a primary strain producing bacterial cellulose (BC). In G. xylinus, BcsD is a subunit of cellulose synthase and is participated in the assembly process of BC. A series of G. xylinus with different expression levels of the bcsD gene were obtained by using the CRISPR/dCas9 technique. Analysis of the structural characteristics of BC showed that the crystallinity and porosity of BC changed with the expression of bcsD. The porosity varied from 59.95%-84.05%, and the crystallinity varied from 74.26%-93.75%, while the yield of BC did not decrease significantly upon changing the expression levels of bcsD. The results showed that the porosity of bacterial cellulose significantly increased, while the crystallinity was positively correlated with the expression of bcsD, when the expression level of bcsD was below 55.34%. By altering the expression level of the bcsD gene, obtaining BC with different structures but stable yield through a one-step fermentation of G. xylinus was achieved.
Cellulose/chemistry*
;
Clustered Regularly Interspaced Short Palindromic Repeats
;
Fermentation
;
Gluconacetobacter xylinus/metabolism*
3.Synthesis of pyrroloquinoline quinone by recombinant Gluconobacter oxydans.
Runle YE ; Feng LI ; Fan DING ; Zhenhui ZHAO ; Sheng CHEN ; Jianfeng YUAN
Chinese Journal of Biotechnology 2020;36(6):1138-1149
Pyrroloquinoline quinone (PQQ), an important redox enzyme cofactor, has many physiological and biochemical functions, and is widely used in food, medicine, health and agriculture industry. In this study, PQQ production by recombinant Gluconobacter oxydans was investigated. First, to reduce the by-product of acetic acid, the recombinant strain G. oxydans T1 was constructed, in which the pyruvate decarboxylase (GOX1081) was knocked out. Then the pqqABCDE gene cluster and tldD gene were fused under the control of endogenous constitutive promoter P0169, to generate the recombinant strain G. oxydans T2. Finally, the medium composition and fermentation conditions were optimized. The biomass of G. oxydans T1 and G. oxydans T2 were increased by 43.02% and 38.76% respectively, and the PQQ production was 4.82 and 20.5 times higher than that of the wild strain, respectively. Furthermore, the carbon sources and culture conditions of G. oxydans T2 were optimized, resulting in a final PQQ yield of (51.32±0.899 7 mg/L), 345.6 times higher than that of the wild strain. In all, the biomass of G. oxydans and the yield of PQQ can be effectively increased by genetic engineering.
Fermentation
;
Gene Knockout Techniques
;
Gluconobacter oxydans
;
genetics
;
metabolism
;
Industrial Microbiology
;
methods
;
Multigene Family
;
genetics
;
Organisms, Genetically Modified
;
PQQ Cofactor
;
biosynthesis
;
genetics
;
Promoter Regions, Genetic
;
genetics
4.Biosynthesis of α-lipoic acid in Gluconobacter oxydans increases the production of vitamin C by one-step fermentation.
Yu LIU ; Enxu WANG ; Caihui PAN ; Xiutao DONG ; Mingzhu DING
Chinese Journal of Biotechnology 2019;35(7):1266-1276
In a one-step fermentation system of vitamin C production with Gluconobacter oxydans and Ketogulonicigenium vulgare, a functional module of α-lipoic acid biosynthesis was constructed in G. oxydans. The engineered G. oxydans was co-cultured with K. vulgare to enhance the growth and 2-keto-L-gulonic acid (2-KGA) production of K. vulgare. This one-step fermentation system alleviated the growth inhibition during the mono-culture of K. vulgare and strengthened the interaction between the two bacteria. Moreover, the yield of vitamin C precursor (2-KGA) increased to 73.34 g/L (the control group was 59.09 g/L), and the conversion of D-sorbitol to 2-KGA increased to 86.0%. This study provides a new idea for further optimizing the one-step fermentation system of vitamin C production.
Ascorbic Acid
;
Fermentation
;
Gluconobacter oxydans
;
Rhodobacteraceae
;
Thioctic Acid
;
biosynthesis
5.Surface Film Formation in Static-Fermented Rice Vinegar: A Case Study
Jeong Hyun YUN ; Jae Ho KIM ; Jang Eun LEE
Mycobiology 2019;47(2):250-255
In the present study, we aimed to determine the cause of surface film formation in three rice vinegars fermented using the traditional static fermentation method. The pH and total acidity of vinegar were 3.0–3.3 and 3.0–8.7%, respectively, and acetic acid was the predominant organic acid present. Colonies showing a clear halo on GYC medium were isolated from the surface film of all vinegars. Via 16S rDNA sequencing, all of the isolates were identified as Acetobacter pasteurianus. Furthermore, field-emission scanning electron microscopy analysis showed that the bacterial cells had a rough surface, were rod-shaped, and were ∼1 × 2 µm in size. Interestingly, cells of the isolate from one of the vinegars were surrounded with an extremely fine threadlike structure. Thus, our results suggest that formation of the surface film in rice vinegar was attributable not to external contamination, to the production of bacterial cellulose by A. pasteurianus to withstand the high concentrations of acetic acid generated during fermentation. However, because of the formation of a surface film in vinegar is undesirable from an industrial perspective, further studies should focus on devising a modified fermentation process to prevent surface film formation and consequent quality degradation.
Acetic Acid
;
Acetobacter
;
Cellulose
;
DNA, Ribosomal
;
Fermentation
;
Hydrogen-Ion Concentration
;
Methods
;
Microscopy, Electron, Scanning
6.Lung Microbiome Analysis in Steroid-Naїve Asthma Patients by Using Whole Sputum.
Jae Woo JUNG ; Jae Chol CHOI ; Jong Wook SHIN ; Jae Yeol KIM ; In Won PARK ; Byoung Whui CHOI ; Heung Woo PARK ; Sang Heon CHO ; Kijeong KIM ; Hye Ryun KANG
Tuberculosis and Respiratory Diseases 2016;79(3):165-178
BACKGROUND: Although recent metagenomic approaches have characterized the distinguished microbial compositions in airways of asthmatics, these results did not reach a consensus due to the small sample size, non-standardization of specimens and medication status. We conducted a metagenomics approach by using terminal restriction fragment length polymorphism (T-RFLP) analysis of the induced whole sputum representing both the cellular and fluid phases in a relative large number of steroid naïve asthmatics. METHODS: Induced whole sputum samples obtained from 36 healthy subjects and 89 steroid-naїve asthma patients were analyzed through T-RFLP analysis. RESULTS: In contrast to previous reports about microbiota in the asthmatic airways, the diversity of microbial composition was not significantly different between the controls and asthma patients (p=0.937). In an analysis of similarities, the global R-value showed a statistically significant difference but a very low separation (0.148, p=0.002). The dissimilarity in the bacterial communities between groups was 28.74%, and operational taxonomic units (OTUs) contributing to this difference were as follows: OTU 789 (Lachnospiraceae), 517 (Comamonadaceae, Acetobacteraceae , and Chloroplast), 633 (Prevotella), 645 (Actinobacteria and Propionibacterium acnes), 607 (Lactobacillus buchneri, Lactobacillus otakiensis, Lactobacillus sunkii, and Rhodobacteraceae), and 661 (Acinetobacter, Pseudomonas, and Leptotrichiaceae), and they were significantly more prevalent in the sputum of asthma patients than in the sputum of the controls. CONCLUSION: Before starting anti-asthmatic treatment, the microbiota in the whole sputum of patients with asthma showed a marginal difference from the microbiota in the whole sputum of the controls.
Acetobacteraceae
;
Asthma*
;
Consensus
;
Healthy Volunteers
;
Humans
;
Lactobacillus
;
Lung*
;
Metagenomics
;
Microbiota*
;
Polymorphism, Restriction Fragment Length
;
Propionibacterium
;
Pseudomonas
;
RNA, Ribosomal, 16S
;
Sample Size
;
Sputum*
7.Effects of carbon and nitrogen sources on 5-keto-gluconic acid production.
Zhilei TAN ; Hongcui WANG ; Yuqiao WEI ; Yanyan LI ; Cheng ZHONG ; Shiru JIA
Chinese Journal of Biotechnology 2014;30(1):76-82
Gluconobacter oxydans is known to oxidize glucose to gluconic acid (GA), and subsequently, to 2-keto-gluconic acid (2KGA) and 5-keto-gluconic acid (5KGA), while 5KGA can be converted to L-(+)-tartaric acid. In order to increase the production of 5KGA, Gluconobacter oxydans HGI-1 that converts GA to 5KGA exclusively was chosen in this study, and effects of carbon sources (lactose, maltose, sucrose, amylum and glucose) and nitrogen sources (yeast extract, fish meal, corn steep liquor, soybean meal and cotton-seed meal) on 5KGA production were investigated. Results of experiment in 500 mL shake-flask show that the highest yield of 5KGA (98.20 g/L) was obtained using 100 g/L glucose as carbon source. 5KGA reached 100.20 g/L, 109.10 g/L, 99.83 g/L with yeast extract, fish meal and corn steep liquor as nitrogen source respectively, among which the optimal nitrogen source was fish meal. The yield of 5KGA by corn steep liquor is slightly lower than that by yeast extract. For the economic reason, corn steep liquor was selected as nitrogen source and scaled up to 5 L stirred-tank fermentor, and the final concentration of 5KGA reached 93.80 g/L, with its maximum volumetric productivity of 3.48 g/(L x h) and average volumetric productivity of 1.56 g/(L x h). The result obtained in this study showed that carbon and nitrogen sourses for large-scale production of 5KGA by Gluconobacter oxydans HGI-1 were glucose and corn steep liquor, respectively, and the available glucose almost completely (85.93%) into 5KGA.
Bioreactors
;
Carbon
;
chemistry
;
Culture Media
;
chemistry
;
Fermentation
;
Gluconates
;
metabolism
;
Gluconobacter oxydans
;
metabolism
;
Industrial Microbiology
;
Nitrogen
;
chemistry
8.Optimization of the fermentation conditions for 5-keto-D-gluconic acid production.
Boyi LI ; Haifeng PAN ; Weirong SUN ; Yongqing CHENG ; Zhipeng XIE ; Jianguo ZHANG
Chinese Journal of Biotechnology 2014;30(9):1486-1490
Gluconobacter oxydans converts glucose to gluconic acid and subsequently to 5-keto-D-gluconic acid (5-KGA), a precursor of industrially important L(+)-tartaric acid. To increase the yield of 5-KGA, fermentation conditions of 5-KGA production was optimized. Under the optimum medium and culture conditions in the shake flask, the highest 5-KGA production reached 19.7 g/L, increased by 43.8% after optimization. In a 5-L bioreactor, the pH was controlled at 5.5 and dissolved oxygen (DO) at 15%, 5-KGA production reached 46.0 g/L, raised at least 1.3 times than in the shake flask. Glucose feeding fermentation process was further developed, and the highest 5-KGA production of 75.5 g/L with 70% of yield was obtained, 32.0% higher than the highest reported value. Therefore, this newly developed fermentation process provided a practical and effective alternative for the commercial production of 5-KGA, and further of L(+)-tartaric acid.
Bioreactors
;
Fermentation
;
Gluconates
;
metabolism
;
Gluconobacter oxydans
;
metabolism
;
Glucose
;
metabolism
;
Industrial Microbiology
;
Tartrates
;
metabolism
9.Preparation for and study on the property of medical bacterial cellulose.
Zhe LI ; Zhiyong YAN ; Shiyan CHEN ; Huaping WANG
Journal of Biomedical Engineering 2012;29(1):164-169
Bacterial cellulose (BC) was prepared by Acetobacter xylinum in static culture. After purified by chemical treatment, the microstructure, chemical structure, crystal structure and mechanical property of BC were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR), X-ray diffractometry (XRD) and tensile strength measurement respectively, and compared with those of the imported bacterial cellulose wound dressing served as control sample (XBC). The results indicated that the diameter of the BC was (22 +/- 9) nm, and the crystallinity index was 89.71%. The tensile strength and the Young's mouduls of BC were significant higher than XBC both in wet and dry states. The biocompatibility of BC and XBC were evaluated by cytotoxicity test, delayed contact sensitization study in the Guinea Pig and skin irritation test. The results showed that BC had reliable biocompatibility as well as XBC. With the unique nanostructure, high crystallinity, high mechanical strength, and reliable biocompatibility, BC produced in our country as well as XBC can be used as a safe biomaterial for the medical applications.
Animals
;
Biocompatible Materials
;
chemistry
;
Cellulose
;
biosynthesis
;
chemistry
;
Culture Techniques
;
Gluconacetobacter xylinus
;
growth & development
;
metabolism
;
Guinea Pigs
;
Materials Testing
;
Nanoparticles
;
Tensile Strength
10.Biosynthesis of 3-hydroxypropionic acid from 1,3-propanediol by Gluconobacter oxydans ZJB09112.
Lihui SUN ; Feifei YU ; Yuguo ZHENG
Chinese Journal of Biotechnology 2012;28(4):498-507
3-Hydroxypropionic acid is an important building block to synthesize lots of industrially valuable chemicals. In this study, we firstly investigated the effects of cell, substrate and product concentrations on biosynthesis of 3-hydroxypropionic acid from 1,3-propanediol by Gluconobacter oxydans ZJB09112 in 50-mL shake flask containing 10 mL transformation liquid. To avoid the inhibition of substrate and product, we adopted fed-batch biotransformation and fed-batch biotransformation coupled with in situ product removal in 2-L bubble column reactor containing 1 L transformation liquid. The results show that high concentrations of substrate and product could inhibit the biotransformation by decreasing the initial reaction rate, and the optimal reaction conditions were as follows: cell concentration 6 g/L, pH 5.5. Fed-batch biotransformation in which the substrate concentration was maintained at 15-20 g/L could obtain product concentration of 60.8 g/L after 60 h, which gave a productivity of 1.0 g/(Lh) and a yield of 84.3%. Furthermore, fed-batch biotransformation coupled with in situ product removal could achieve the total product concentration of 76.3 g/L after 50 h, which gave a productivity of 1.5 g/(L x h) and a yield of 83.7%. The results obtained here may be useful for the application of G. oxydans in biocatalysis industry by using its characteristic of incomplete oxidation of alcohols.
Batch Cell Culture Techniques
;
Biotransformation
;
Gluconobacter oxydans
;
metabolism
;
Lactic Acid
;
analogs & derivatives
;
biosynthesis
;
Oxidation-Reduction
;
Propylene Glycols
;
metabolism

Result Analysis
Print
Save
E-mail