1.Expression pattern and transcriptional regulation of CsPIF7 in Camellia sinensis.
Shunhui JIANG ; Huiying JIN ; Na TIAN ; Shuoqian LIU
Chinese Journal of Biotechnology 2025;41(7):2885-2896
The PIF7 gene is a member of the bHLH family, playing a pivotal role in plant germination. However, its roles in tea plants (Camellia sinensis) remain largely unexplored. In this study, we cloned the phytochrome-interacting factor gene CsPIF7 to elucidate its role in the germination of tea plants. Subcellular localization analysis demonstrated that CsPIF7 was localized in the nucleus. Yeast one-hybrid and dual-luciferase reporter assays demonstrated that CsPIF7 directly bound to a specific region (7-321 bp) of the CsEXP promoter, thereby repressing the expression of CsEXP. These findings suggest that CsPIF7 may modulate the germination of tea plants by inhibiting the expression of CsEXP. Quantitative real-time PCR results showed that both CsPIF7 and CsEXP exhibited high expression levels in tea buds, with different expression patterns in response to abscisic acid (ABA) treatment. Furthermore, both CsPIF7 and CsEXP were upregulated under cold stress at 4 ℃, indicating their involvement in the cold response of tea plants. Taken together, these results suggest that CsPIF7 regulates CsEXP expression in an ABA-dependent manner, thereby influencing the germination of tea plants. This study provides both theoretical and experimental insights into the molecular mechanisms governing the germination of tea plants, laying the groundwork for further exploring the role of PIF7 in plant development and stress responses.
Camellia sinensis/metabolism*
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Abscisic Acid/pharmacology*
;
Germination/genetics*
;
Basic Helix-Loop-Helix Transcription Factors/metabolism*
;
Promoter Regions, Genetic
;
Cold Temperature
2.Functional mechanisms of WRKY transcription factors in regulating plant response to abiotic stresses.
Shuye WANG ; Guoqiang WU ; Ming WEI
Chinese Journal of Biotechnology 2024;40(1):35-52
WRKYs is a unique family of transcription factors (TFs) in plants, and belongs to the typical multifunctional regulator. It is involved in the regulation of multiple signaling pathways. This type of transcription factor is characterized to contain about 60 highly conservative amino acids as the WRKY domain, and usually also has the Cys2His2 or Cys2His-Cys zinc finger structure. WRKYs can directly bind to the W-box sequence ((T)(T) TGAC (C/T)) in the promoter region of the downstream target gene, and activate or inhibit the transcription of the target genes by interacting with the target protein. They may up-regulate the expression of stress-related genes through integrating signal pathways mediated by abscisic acid (ABA) and reactive oxygen species (ROS), thus playing a vital role in regulating plant response to abiotic stresses. This review summarizes the advances in research on the structure and classification, regulatory approach of WRKYs, and the molecular mechanisms of WRKYs involved in response to drought and salt stresses, and prospects future research directions, with the aim to provide a theoretical support for the genetic improvement of crop in response to abiotic stresses.
Transcription Factors/genetics*
;
Abscisic Acid
;
Amino Acids
;
Droughts
;
Stress, Physiological/genetics*
3.Identification and functional analysis of the transcriptional factor GeERF4B-1 in Gelsemium elegans.
Chuihuai YOU ; Ruiqi CHEN ; Xinlu SUN ; Yingying LI ; Yachun SU
Chinese Journal of Biotechnology 2024;40(11):4198-4210
Gelsemium elegans, a vine plant of Loganiaceae, has both medicinal and forage values. However, it is susceptible to low temperatures during growth. Exploring low temperature response genes is of great significance for cold resistance breeding of G. elegans. Ethylene response factors (ERFs) are the transcription factors of the AP2/ERF superfamily and play a crucial role in plant stress response. In this study, based on the unigene GeERF involved in the response to low temperature stress in the transcriptome of G. elegans, a full-length cDNA sequence of the transcription factor GeERF4B-1 was cloned from the leaves of G. elegans by reverse transcription-polymerase chain reaction (RT-PCR). Bioinformatics analysis showed that GeERF4B-1 had an open reading frame of 759 bp, encoding a protein composed of 252 amino acid residues and with a relative molecular weight of 27 kDa. The deduced protein was predicted to be an unstable, alkaline, and hydrophilic protein. The phylogenetic tree showed that GeERF4B-1 was in the same clade as the B-4 subfamily of the ERF family. The results of the subcellular localization experiment revealed that GeERF4B-1 was located in the nucleus. Real time quantitative PCR (RT-qPCR) analysis indicated that GeERF4B-1 was expressed in the root, stem, and leaf of G. elegans, with the highest expression level in the root. Compared with the control, the treatments with a low temperature (4 ℃), methyl jasmonate (MeJA), and abscisic acid (ABA) up-regulated the expression level of GeERF4B-1, which reached the peak at 24-48 h. This result revealed that GeERF4B-1 actively responded to low temperature, MeJA, and ABA stresses. However, both sodium chloride (NaCl) and drought treatments down-regulated the expression of GeERF4B-1. In addition, a prokaryotic expression vector of GeERF4B-1 was constructed, and a fusion protein of approximately 52 kDa was yielded after induced expression. The results of the plate stress assay showed that compared with the control, the prokaryotic strain expressing GeERF4B-1 demonstrated enhanced tolerance to low temperatures and sensitivity to salt and mannitol stresses. This study provides theoretical references and potential genetic resources for breeding G. elegans varieties with stress resistance.
Transcription Factors/metabolism*
;
Plant Proteins/metabolism*
;
Gelsemium/metabolism*
;
Acetates/pharmacology*
;
Gene Expression Regulation, Plant
;
Phylogeny
;
Cold Temperature
;
Amino Acid Sequence
;
Cyclopentanes/metabolism*
;
Oxylipins/metabolism*
;
Stress, Physiological/genetics*
;
Abscisic Acid/metabolism*
;
Cloning, Molecular
4.Genome-wide analysis of AP2/ERF superfamily in Isatis indigotica.
Liang XIAO ; Jun-Ze REN ; Qing LI ; Bin YANG ; Zhen-Jiang LIU ; Rui-Bing CHEN ; Lei ZHANG
Journal of Integrative Medicine 2023;21(1):77-88
OBJECTIVE:
AP2/ERF (APETALA2/ethylene-responsive factor) superfamily is one of the largest gene families in plants and has been reported to participate in various biological processes, such as the regulation of biosynthesis of active lignan. However, few studies have investigated the genome-wide role of the AP2/ERF superfamily in Isatis indigotica. This study establishes a complete picture of the AP2/ERF superfamily in I. indigotica and contributes valuable information for further functional characterization of IiAP2/ERF genes and supports further metabolic engineering.
METHODS:
To identify the IiAP2/ERF superfamily genes, the AP2/ERF sequences from Arabidopsis thaliana and Brassica rapa were used as query sequences in the basic local alignment search tool. Bioinformatic analyses were conducted to investigate the protein structure, motif composition, chromosome location, phylogenetic relationship, and interaction network of the IiAP2/ERF superfamily genes. The accuracy of omics data was verified by quantitative polymerase chain reaction and heatmap analyses.
RESULTS:
One hundred and twenty-six putative IiAP2/ERF genes in total were identified from the I. indigotica genome database in this study. By sequence alignment and phylogenetic analysis, the IiAP2/ERF genes were classified into 5 groups including AP2, ERF, DREB (dehydration-responsive element-binding factor), Soloist and RAV (related to abscisic acid insensitive 3/viviparous 1) subfamilies. Among which, 122 members were unevenly distributed across seven chromosomes. Sequence alignment showed that I. indigotica and A. thaliana had 30 pairs of orthologous genes, and we constructed their interaction network. The comprehensive analysis of gene expression pattern in different tissues suggested that these genes may play a significant role in organ growth and development of I. indigotica. Members that may regulate lignan biosynthesis in roots were also preliminarily identified. Ribonucleic acid sequencing analysis revealed that the expression of 76 IiAP2/ERF genes were up- or down-regulated under salt or drought treatment, among which, 33 IiAP2/ERF genes were regulated by both stresses.
CONCLUSION
This study undertook a genome-wide characterization of the AP2/ERF superfamily in I. indigotica, providing valuable information for further functional characterization of IiAP2/ERF genes and discovery of genetic targets for metabolic engineering.
Abscisic Acid
;
Isatis/genetics*
;
Multigene Family
;
Phylogeny
;
Homeodomain Proteins/genetics*
;
Genome, Plant
5.Abscisic acid-mediated cytosolic Ca2+ modulates triterpenoid accumulation of Ganoderma lucidum.
Meilin CUI ; Yitao ZHAO ; Xiuhong ZHANG ; Wei ZHAO
Journal of Zhejiang University. Science. B 2023;24(12):1174-1179
Ganoderma lucidum is a mushroom widely used for its edible and medicinal properties. Primary bioactive constituents of G. lucidum are ganoderic triterpenoids (GTs), which exhibit important pharmacological activity. Abscisic acid (ABA), a plant hormone, is associated with plant growth, development, and stress responses. ABA can also affect the growth, metabolism, and physiological activities of different fungi and participates in the regulation of the tetracyclic triterpenes of some plants. Our findings indicated that ABA treatment promoted GT accumulation by regulating the gene expression levels (squalene synthase (sqs), 3-hydroxy-3-methylglutaryl-CoA reductase (hmgr), and lanosterol synthase (ls)), and also activated cytosolic Ca2+ channels. Furthermore, under ABA mediation, exogenous Ca2+ donors and inhibitors directly affected the cytosolic Ca2+ concentration and related gene expression in Ca2+ signaling. Our study also revealed that ABA-mediated cytosolic Ca2+ played a crucial regulatory role in GT biosynthesis, accompanied by antioxidant defense modulation with increasing superoxide dismutase (SOD) activity and ascorbate peroxidase (APX) activity, and the resistance ability of O2•- and glutathione (GSH) contents.
Reishi/metabolism*
;
Triterpenes/metabolism*
;
Abscisic Acid/metabolism*
;
Antioxidants/metabolism*
6.Advances in abscisic acid biosynthesis.
Kexin LI ; Ying WANG ; Mingdong YAO ; Wenhai XIAO
Chinese Journal of Biotechnology 2023;39(6):2190-2203
Abscisic acid, a plant hormone that inhibits growth, is a key factor in balancing plant endogenous hormones and regulating growth and metabolism. Abscisic acid can improve the drought resistance and salt tolerance of crops, reduce fruit browning, reduce the incidence rate of malaria and stimulate insulin secretion, so it has a broad application potential in agriculture and medicine. Compared with traditional plant extraction and chemical synthesis, abscisic acid synthesis by microorganisms is an economic and sustainable route. At present, a lot of progress has been made in the synthesis of abscisic acid by natural microorganisms such as Botrytis cinerea and Cercospora rosea, while the research on the synthesis of abscisic acid by engineered microorganisms is rarely reported. Saccharomyces cerevisiae, Yarrowia lipolytica and Escherichia coli are common hosts for heterologous synthesis of natural products due to their advantages of clear genetic background, easy operation and friendliness for industrial production. Therefore, the heterologous synthesis of abscisic acid by microorganisms is a more promising production method. The author reviews the research on the heterologous synthesis of abscisic acid by microorganisms from five aspects: selection of chassis cells, screening and expression enhancement of key enzymes, regulation of cofactors, enhancement of precursor supply and promotion of abscisic acid efflux. Finally, the future development direction of this field is prospected.
Abscisic Acid/metabolism*
;
Plant Growth Regulators/metabolism*
;
Plants/metabolism*
;
Yarrowia/metabolism*
7.Genome-wide identification of the banana GLR gene family and its expression analysis in response to low temperature and abscisic acid/methyl jasmonate.
Binbin LUO ; Hui ZHANG ; Dan LI ; Qiuzhen WU ; Wanjun GE ; Tianyuan ZHU ; Yukun CHEN ; Yuji HUANG ; Yuling LIN ; Zhongxiong LAI
Chinese Journal of Biotechnology 2023;39(7):2874-2896
Glutamate receptor-like (GLR) is an important class of Ca2+ channel proteins, playing important roles in plant growth and development as well as in response to biotic and abiotic stresses. In this paper, we performed genome-wide identification of banana GLR gene family based on banana genomic data. Moreover, we analyzed the basic physicochemical properties, gene structure, conserved motifs, promoter cis-acting elements, evolutionary relationships, and used real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) to verify the expression patterns of some GLR family members under low temperature of 4 ℃ and different hormone treatments. The results showed that there were 19 MaGLR family members in Musa acuminata, 16 MbGLR family members in Musa balbisiana and 14 MiGLR family members in Musa itinerans. Most of the members were stable proteins and had signal peptides, all of them had 3-6 transmembrane structures. Prediction of subcellular localization indicated that all of them were localized on the plasma membrane and irregularly distributed on the chromosome. Phylogenetic analysis revealed that banana GLRs could be divided into 3 subclades. The results of promoter cis-acting elements and transcription factor binding site prediction showed that there were multiple hormone- and stress-related response elements and 18 TFBS in banana GLR. RT-qPCR analysis showed that MaGLR1.1 and MaGLR3.5 responded positively to low temperature stress and were significantly expressed in abscisic acid/methyl jasmonate treatments. In conclusion, the results of this study suggest that GLR, a highly conserved family of ion channels, may play an important role in the growth and development process and stress resistance of banana.
Musa/metabolism*
;
Phylogeny
;
Abscisic Acid/metabolism*
;
Temperature
;
Stress, Physiological/genetics*
;
Hormones/metabolism*
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Gene Expression Profiling
8.Regulation of plant iron homeostasis by abscisic acid: a review.
Miao ZHANG ; Jialu GAO ; Guowei DENG ; Changhong GUO ; Yingdong BI ; Donglin GUO
Chinese Journal of Biotechnology 2022;38(8):2725-2737
Iron (Fe) is an important trace element involved in many important plant physiological and metabolic processes such as photosynthesis, respiration and nitrogen metabolism. Plants maintain iron homeostasis through absorption, transporting, storage and redistribution of iron. Iron metabolism is strictly regulated in plants. Iron regulatory transcription factors and iron transporters constitute the regulatory network of plant iron absorption and transport in plants. Ferritin and iron transporter jointly regulate the response to excess iron in plants. In recent years, important progress has been made in understanding how abscisic acid (ABA) regulates iron metabolism in plants. ABA may be used as a signal to regulate the absorption, transportation and reuse of Fe, or to relieve the symptoms of iron stress by regulating the oxidative stress responses in plants. In order to gain deeper insights into the crosstalk of ABA and iron metabolism in plants, this review summarized the mechanisms of iron absorption and transport and metabolic regulatory network in plants, as well as the mechanisms of ABA in regulating iron metabolism. The relationship between ABA and FER-like iron deficiency-induced transcription factor (FIT), iron-regulated transporter 1 (IRT1), and oxidative stress of iron deficiency were highlighted, and future research directions were prospected.
Abscisic Acid/metabolism*
;
Gene Expression Regulation, Plant
;
Homeostasis
;
Iron/metabolism*
;
Plants/metabolism*
;
Transcription Factors/metabolism*
9.The role of SnRK2 in the response to stress, the growth and development of plants.
Zixi LIU ; Yaxin ZHU ; Guoqiang WU ; Ming WEI
Chinese Journal of Biotechnology 2022;38(1):89-103
Sucrose non-fermenting-1-related protein kinase 2 (SnRK2) is a specific Ser/Thr protein kinase in plants. SnRK2 can regulate the expression of downstream genes or transcription factors through phosphorylation of substrates to achieve stress resistance regulation in different tissue parts, and make plants adapt to adverse environment. SnRK2 has a small number of members and a molecular weight of about 40 kDa, and contains a conserved N-terminal kinase domain and a divergent C-terminal regulatory domain, which plays an important role in the expression of enzyme. This review summarized the recent research progresses on the discovery, structure, and classification of SnRK2, and its function in response to various stresses and in regulating growth and development, followed by prospecting the future research direction of SnRK2. This review may provide a reference for genetic improvement of crop stress resistance.
Abscisic Acid
;
Arabidopsis Proteins/genetics*
;
Gene Expression Regulation, Plant
;
Growth and Development
;
Plants/genetics*
;
Protein Kinases
;
Protein Serine-Threonine Kinases/genetics*
;
Stress, Physiological/genetics*
10.Research progress on mechanism of phytohormones in regulating flavonoid metabolism.
Jiang-Shan YU ; Miao-Miao ZHANG ; Jiang SHI ; Yu YANG ; Xue MENG ; Jian-Ping XUE ; Wei SUN ; Hui-Hua WAN ; Wei SHENG
China Journal of Chinese Materia Medica 2021;46(15):3806-3813
Phytohormones play an important role at all stages of plant growth, influencing plant growth and development and regulating plant secondary metabolism, such as the synthesis of flavone, flavonol, anthocyanin, and other flavonoids. Flavonoids, a group of important secondary metabolites ubiquitous in plants, have antioxidative, anti-microbial, and anti-inflammatory activities and thus have a wide range of potential applications in Chinese medicine and food nutrition. With the development of biotechnology, phytohormones' regulation on flavonoids has become a research focus in recent years. This study reviewed the research progress on the mechanism of common phytohormones, such as abscisic acid, gibberellin, methyl jasmonate, and salicylic acid, in regulating flavonoid metabolism, and discussed the molecular mechanism of the synthesis and accumulation of flavonoids, aiming at clarifying the key role of phytohormones in modulating flavonoid metabolism. The result is of guiding significance for improving the content of flavonoids in plants through rational use of phytohormones and of reference value for exploring the mechanism of hormones in regulating flavonoid metabolism.
Abscisic Acid
;
Flavonoids
;
Gene Expression Regulation, Plant
;
Gibberellins
;
Plant Development
;
Plant Growth Regulators

Result Analysis
Print
Save
E-mail