1.Two cases of Coffin-Siris syndrome type 3 caused by de novoSMARCB1 gene mutations.
Ying JIN ; Meng-Qiu LI ; Yan-Ling YANG
Chinese Journal of Contemporary Pediatrics 2025;27(7):870-874
Patient 1, a 3-year-6-month-old male, presented with feeding difficulties and delayed motor development. He exhibited poor responsiveness at birth, weak crying, intellectual and motor delays, low immunity, recurrent respiratory infections, hypotonia of the limbs, and distinctive facial features (low-set ears, double chin, and high arched palate), as well as a single transverse palmar crease on the right hand. Genetic testing revealed a c.1096C>T heterozygous variant in the SMARCB1 gene. Patient 2, a 3-year-old male, presented with developmental delay and distinctive facial features. Genetic testing identified the same pathogenic mutation as in Patient 1. The two patients are unrelated, and clinical phenotyping and genetic testing confirmed both cases as Coffin-Siris syndrome type 3. Coffin-Siris syndrome is a rare genetic disorder, and early genetic testing can aid in diagnosis.
Child, Preschool
;
Humans
;
Male
;
Abnormalities, Multiple/genetics*
;
Chromosomal Proteins, Non-Histone/genetics*
;
Ear/abnormalities*
;
Face/abnormalities*
;
Hand Deformities, Congenital/genetics*
;
Intellectual Disability/genetics*
;
Micrognathism/genetics*
;
Mutation
;
Neck/abnormalities*
2.Clinical and genetic analysis of three children with KBG syndrome due to novel variants of ANKRD11 gene.
Li WANG ; Jingjing LI ; Jinghan XU ; Yanlei XU ; Junbo WANG ; Yin FENG ; Xiangdong KONG
Chinese Journal of Medical Genetics 2023;40(1):1-6
OBJECTIVE:
To explore the clinical and genetic characteristics of three children with KBG syndrome.
METHODS:
Clinical data of the three children from two families who have presented at the First Affiliated Hospital of Zhengzhou University between October 2019 and September 2020 and their family members were collected. Trio-whole exome sequencing (trio-WES) and Sanger sequencing were carried out.
RESULTS:
All children had feeding difficulties, congenital heart defects and facial dysmorphism. The sib- pair from family 1 was found to harbor a novel de novo heterozygous c.6270delT (p.Q2091Rfs*84) variant of the ANKRD11 gene, whilst the child from family 2 was found to harbor a novel heterozygous c.6858delC (p.D2286Efs*51) variant of the ANKRD11 gene, which was inherited from his mother who had a mild clinical phenotype.
CONCLUSION
The heterozygous frameshift variants of the ANKRD11 gene probably underlay the disease in the three children. Above findings have enriched the spectrum of the ANKRD11 gene variants.
Female
;
Child
;
Humans
;
Abnormalities, Multiple/genetics*
;
Intellectual Disability/genetics*
;
Bone Diseases, Developmental/genetics*
;
Tooth Abnormalities/genetics*
;
Facies
;
Repressor Proteins/genetics*
;
Mothers
;
Mutation
3.Clinical features and genetic analysis of two Chinese pedigrees affected with Joubert syndrome.
Dengzhi ZHAO ; Yan CHU ; Ke YANG ; Xiaodong HUO ; Xingxing LEI ; Yanli YANG ; Chaoyang ZHANG ; Hai XIAO ; Shixiu LIAO
Chinese Journal of Medical Genetics 2023;40(1):21-25
OBJECTIVE:
To explore the clinical characteristics and genetic basis of two Chinese pedigrees affected with Joubert syndrome.
METHODS:
Clinical data of the two pedigrees was collected. Genomic DNA was extracted from peripheral blood samples and subjected to high-throughput sequencing. Candidate variants were verified by Sanger sequencing. Prenatal diagnosis was carried out for a high-risk fetus from pedigree 2.
RESULTS:
The proband of pedigree 1 was a fetus at 23+5 weeks gestation, for which both ultrasound and MRI showed "cerebellar vermis malformation" and "molar tooth sign". No apparent abnormality was noted in the fetus after elected abortion. The fetus was found to harbor c.812+3G>T and c.1828G>C compound heterozygous variants of the INPP5E gene, which have been associated with Joubert syndrome type 1. The proband from pedigree 2 had growth retardation, mental deficiency, peculiar facial features, low muscle tone and postaxial polydactyly of right foot. MRI also revealed "cerebellar dysplasia" and "molar tooth sign". The proband was found to harbor c.485C>G and c.1878+1G>A compound heterozygous variants of the ARMC9 gene, which have been associated with Joubert syndrome type 30. Prenatal diagnosis found that the fetus only carried the c.485C>G variant. A healthy infant was born, and no anomalies was found during the follow-up.
CONCLUSION
The compound heterozygous variants of the INPP5E and ARMC9 genes probably underlay the disease in the two pedigrees. Above finding has expanded the spectrum of pathogenic variants underlying Joubert syndrome and provided a basis for genetic counseling and prenatal diagnosis.
Female
;
Humans
;
Pregnancy
;
Pedigree
;
Cerebellum/abnormalities*
;
Abnormalities, Multiple/diagnosis*
;
Eye Abnormalities/diagnosis*
;
Kidney Diseases, Cystic/diagnosis*
;
Phosphoric Monoester Hydrolases/genetics*
;
Retina/abnormalities*
;
East Asian People
;
Mutation
4.Clinical features and genetic analysis of a case of Wiedemann-Steiner syndrome due to variant of KMT2A gene.
Chinese Journal of Medical Genetics 2023;40(2):222-225
OBJECTIVE:
To explore the clinical features and genetic etiology of a child with Wiedemann-Steiner syndrome.
METHODS:
A child with WSS who was admitted to the Hematology Department of Tianjin Children's Hospital in May 2021 was selected as the subject. Clinical data of the child was collected. Peripheral blood samples were collected from the child and his parents for the extraction of genomic DNA. The child was subjected to whole exome sequencing, and candidate variant was verified by Sanger sequencing of the child and his parents.
RESULTS:
The main clinical features of the child have included pancytopenia, growth and mental retardation, and facial dysmorphism. Whole exome sequencing revealed that the child has harbored a heterozygous variant of the KMT2A gene, namely c.7804delA (p.M2602Cfs*39). Sanger sequencing verified the variant to be de novo in origin. The variant was unreported previously and predicted to be pathogenic based on the guidelines of American College of Medical Genetics and Genomics (PVS1+PS2+PM2).
CONCLUSION
The heterozygous c.7804delA (p.M2602Cfs*39) variant of the KMT2A gene probably underlay the WSS in this child. Above finding has enriched the mutational spectrum and clinical phenotypes of the KMT2A gene.
Humans
;
Abnormalities, Multiple/genetics*
;
Intellectual Disability/genetics*
;
Mutation
;
Syndrome
5.Analysis of clinical features and genetic variant in a neonate with Au-Kline syndrome due to a de novo variant of the HNRNPK gene.
Jun CHEN ; Liyin DAI ; Hong ZHENG ; Guanghui LIU ; Yuwei ZHAO ; Juan WANG
Chinese Journal of Medical Genetics 2023;40(2):226-229
OBJECTIVE:
To explore the clinical phenotype and genetic basis of a neonate with Au-Kline syndrome (AKS).
METHODS:
Clinical data and result of genetic testing of a neonate with AKS who was admitted to the Affiliated Provincial Children's Hospital of Anhui Medical University in January 2021 were retrospectively analyzed. Relevant literature was searched from the Wanfang Data Knowledge Service Platform, China National Knowledge Infrastructure and PubMed databases using key words "Au Kline syndrome", "Au-Kline syndrome", "HNRNPK" and "AKS". The research period was set as from January 1, 2000 to December 31, 2020.
RESULTS:
The male newborn has manifested feeding difficulties, hypotonia, absence of the upper jaw to the uvula and facial dysmorphism. Trio-whole exome sequencing revealed that he has harbored a frameshift c.478dupA (p.Ile160AsnfsTer7) variant of the HNRNPK gene, which was varified by Sanger sequencing to have a de novo origin. The variant has not been included in the databases. Based on the guidelines from the American College of Medical Genetics and Genomics, the variant was rated as pathogenic (PVS1+PS2+PM2_Supporting). Literature retrieval has identified 14 children with AKS and de novo mutations of the HNRNPK gene. Their clinical manifestations have included growth and motor retardation, various degree of mental retardation, facial dysmorphism and a high frequency of congenital heart malformations.
CONCLUSION
The AKS in this child may be attributed to the c478dupA frameshifting variant of the HNRNPK gene. Diagnosis of AKS should be suspected for children with mental retardation and multiple congenital malformation syndromes including Kabuki syndrome.
Humans
;
Male
;
Abnormalities, Multiple/genetics*
;
Genetic Testing
;
Heterogeneous-Nuclear Ribonucleoprotein K/genetics*
;
Intellectual Disability/genetics*
;
Mutation
;
Retrospective Studies
;
Infant, Newborn
6.Clinical phenotype and genetic analysis of a child with 3p26.3p25.3 deletion.
Jiamin SHI ; Shangqin CHEN ; Aihui LU ; Yaqin LIANG ; Qiu WANG ; Chaosheng LU ; Dan WANG
Chinese Journal of Medical Genetics 2023;40(2):234-237
OBJECTIVE:
To explore the genetic basis for a child with facial dysmorphism and multiple malformations.
METHODS:
The child, born at 34+6 weeks' gestation due to premature rupture of amniotic membrane, dichorionic diamniotic twinning and gestational diabetes, was subjected to chromosomal karyotyping analysis and copy number variations sequencing (CNV-seq).
RESULTS:
The child was found to have facial dysmorphism, hypospadia, cryptorchidism and hypotonia. He was found to have a 46,XY,del(3)(p26) karyotype in addition with a 9.80 Mb deletion (chr3: 60 000-9 860 000) encompassing 33 protein coding genes.
CONCLUSION
The 3p26.3p25.3 deletion probably underlay the multiple malformations in this child. Continuous follow-up is required to improve his quality of life.
Humans
;
Male
;
Chromosome Deletion
;
DNA Copy Number Variations
;
Quality of Life
;
Abnormalities, Multiple/genetics*
;
Phenotype
7.Oculo-facio-cardio-dental syndrome caused by BCOR gene mutations: a case report.
Yuan-Yuan LU ; Zuo-Hui ZHANG ; Xue LI ; Na GUAN
Chinese Journal of Contemporary Pediatrics 2023;25(2):202-204
A full-term female infant was admitted at 5 hours after birth due to heart malformations found during the fetal period and cyanosis once after birth. Mmultiple malformations of eyes, face, limbs, and heart were noted. The whole-exome sequencing revealed a pathogenic heterozygous mutation, c.2428C>T(p.Arg810*), in the BCOR gene. The infant was then diagnosed with oculo-facio-cardio-dental syndrome. He received assisted ventilation to improve oxygenation and nutritional support during hospitalization. Right ventricular double outlet correction was performed 1 month after birth. Ocular lesions were followed up and scheduled for elective surgery. The possibility of oculo-facio-cardio-dental syndrome should be considered for neonates with multiple malformations of eyes, face, and heart, and genetic testing should be performed as early as possible to confirm the diagnosis; meanwhile, active ophthalmic and cardiovascular symptomatic treatment should be given to improve the prognosis.
Female
;
Humans
;
Infant
;
Infant, Newborn
;
Male
;
Abnormalities, Multiple/therapy*
;
Cataract/genetics*
;
Cyanosis
;
Proto-Oncogene Proteins
;
Repressor Proteins/genetics*
;
Heart Defects, Congenital/genetics*
8.Genetic analysis of a child patient with rare fibrochondrogenesis due to COL11A1 gene variant.
Danyang LI ; Chuan ZHANG ; Bingbo ZHOU ; Xue CHEN ; Yupei WANG ; Ling HUI
Chinese Journal of Medical Genetics 2023;40(4):468-472
OBJECTIVE:
To analyze the clinical data and genetic characteristics of a child with fibrocartilage hyperplasia type 1 (FBCG1).
METHODS:
A child who was admitted to Gansu Provincial Maternity and Child Health Care Hospital on January 21, 2021 due to severe pneumonia and suspected congenital genetic metabolic disorder was selected as the study subject. Clinical data of the child was collected, and genomic DNA was extracted from peripheral blood samples from the child and her parents. Whole exome sequencing (WES) was carried out, and candidate variants were verified by Sanger sequencing.
RESULTS:
The patient, a 1-month-old girl, had presented with facial dysmorphism, abnormal skeletal development, and clubbing of upper and lower limbs. WES revealed that she has harbored compound heterozygous variants c.3358G>A/c.2295+1G>A of the COL11A1 gene, which has been associated with fibrochondrogenesis. Sanger sequencing has verified that the variants have been respectively inherited from her father and mother, both of whom were phenotypically normal. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the c.3358G>A variant was graded as likely pathogenic (PM1+PM2_Supporting+PM3+PP3), and so was the c.2295+1G>A variant (PVS1+PM2_Supporting).
CONCLUSION
The compound heterozygous variants c.3358G>A/c.2295+1G>A probably underlay the disease in this child. Above finding has facilitated definite diagnosis, genetic counseling for her family.
Female
;
Humans
;
Infant
;
Abnormalities, Multiple
;
Collagen Type XI/genetics*
;
Genetic Counseling
;
Genomics
;
Mutation
9.Clinical characteristics and genetic analysis of a fetus with Melnick-Needles syndrome due to variant of FLNA gene.
Jinghui ZOU ; Yisheng ZHANG ; Yan LIU ; Aijiao XUE ; Lulu YAN ; Haibo LI
Chinese Journal of Medical Genetics 2023;40(5):582-587
OBJECTIVE:
To explore the clinical and genetic characteristics of a fetus with Melnick-Needles syndrome (MNS).
METHODS:
A fetus with MNS diagnosed at Ningbo Women and Children's Hospital in November 2020 was selected as the study subject. Clinical data was collected. Pathogenic variant was screened by using trio-whole exome sequencing (trio-WES). Candidate variant was verified by Sanger sequencing.
RESULTS:
Prenatal ultrasonography of the fetus had shown multiple anomalies including intrauterine growth retardation, bilateral femur curvature, omphalocele, single umbilical artery, and oligohydramnios. Trio-WES revealed that the fetus has harbored hemizygous c.3562G>A (p.A1188T) missense variant of the FLNA gene. Sanger sequencing confirmed that the variant was maternally derived, whilst its father was of a wild type. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the variant was predicted to be likely pathogenic (PS4+PM2_Supporting+PP3+PP4).
CONCLUSION
The hemizygous c.3562G>A (p.A1188T) variant of the FLNA gene probably underlay the structural abnormalities in this fetus. Genetic testing can facilitate accurate diagnosis of MNS and provide a basis for genetic counseling for this family.
Child
;
Female
;
Humans
;
Pregnancy
;
Abnormalities, Multiple/genetics*
;
Fetal Growth Retardation
;
Fetus
;
Filamins/genetics*
;
Genetic Counseling
;
Mutation
;
Osteochondrodysplasias
10.Analysis of a case of Multiple pterygium syndrome due to a novel variant of CHRNG gene.
Yiru CHEN ; Tianying NONG ; Weizhe SHI ; Jiangui LI ; Xuejiao DING ; Yue LI ; Mingwei ZHU ; Hongwen XU
Chinese Journal of Medical Genetics 2023;40(6):686-690
OBJECTIVE:
To explore the clinical characteristics and genetic etiology of a child with multiple pterygium syndrome (MPS).
METHODS:
A child with MPS who was treated at the Orthopedics Department of Guangzhou Women and Children's Medical Center Affiliated to Guangzhou Medical University on August 19, 2020 was selected as the study subject. Clinical data of the child was collected. Peripheral blood samples of the child and her parents were also collected. Whole exome sequencing (WES) was carried out for the child. Candidate variant was validated by Sanger sequencing of her parents and bioinformatic analysis.
RESULTS:
The child, an 11-year-old female, had a complain of "scoliosis found 8 years before and aggravated with unequal shoulder height for 1 year". WES results revealed that she has carried a homozygous c.55+1G>C splice variant of the CHRNG gene, for which both of her parents were heterozygous carriers. By bioinformatic analysis, the c.55+1G>C variant has not been recorded by the CNKI, Wanfang data knowledge service platform and HGMG databases. Analysis with Multain online software suggested that the amino acid encoded by this site is highly conserved among various species. As predicted with the CRYP-SKIP online software, the probability of activation and skipping of the potential splice site in exon 1 caused by this variant is 0.30 and 0.70, respectively. The child was diagnosed with MPS.
CONCLUSION
The CHRNG gene c.55+1G>C variant probably underlay the MPS in this patient.
Humans
;
Child
;
Female
;
Abnormalities, Multiple/genetics*
;
Malignant Hyperthermia/genetics*
;
Skin Abnormalities/genetics*
;
Heterozygote
;
Mutation
;
Receptors, Nicotinic/genetics*

Result Analysis
Print
Save
E-mail