1.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
2.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
Purpose:
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods:
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results:
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
3.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
4.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
5.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
Purpose:
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods:
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results:
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
6.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.
7.Target-Enhanced Whole-Genome Sequencing Shows Clinical Validity Equivalent to Commercially Available Targeted Oncology Panel
Sangmoon LEE ; Jin ROH ; Jun Sung PARK ; Islam Oguz TUNCAY ; Wonchul LEE ; Jung-Ah KIM ; Brian Baek-Lok OH ; Jong-Yeon SHIN ; Jeong Seok LEE ; Young Seok JU ; Ryul KIM ; Seongyeol PARK ; Jaemo KOO ; Hansol PARK ; Joonoh LIM ; Erin CONNOLLY-STRONG ; Tae-Hwan KIM ; Yong Won CHOI ; Mi Sun AHN ; Hyun Woo LEE ; Seokhwi KIM ; Jang-Hee KIM ; Minsuk KWON
Cancer Research and Treatment 2025;57(2):350-361
Purpose:
Cancer poses a significant global health challenge, demanding precise genomic testing for individualized treatment strategies. Targeted-panel sequencing (TPS) has improved personalized oncology but often lacks comprehensive coverage of crucial cancer alterations. Whole-genome sequencing (WGS) addresses this gap, offering extensive genomic testing. This study demonstrates the medical potential of WGS.
Materials and Methods:
This study evaluates target-enhanced WGS (TE-WGS), a clinical-grade WGS method sequencing both cancer and matched normal tissues. Forty-nine patients with various solid cancer types underwent both TE-WGS and TruSight Oncology 500 (TSO500), one of the mainstream TPS approaches.
Results:
TE-WGS detected all variants reported by TSO500 (100%, 498/498). A high correlation in variant allele fractions was observed between TE-WGS and TSO500 (r=0.978). Notably, 223 variants (44.8%) within the common set were discerned exclusively by TE-WGS in peripheral blood, suggesting their germline origin. Conversely, the remaining subset of 275 variants (55.2%) were not detected in peripheral blood using the TE-WGS, signifying them as bona fide somatic variants. Further, TE-WGS provided accurate copy number profiles, fusion genes, microsatellite instability, and homologous recombination deficiency scores, which were essential for clinical decision-making.
Conclusion
TE-WGS is a comprehensive approach in personalized oncology, matching TSO500’s key biomarker detection capabilities. It uniquely identifies germline variants and genomic instability markers, offering additional clinical actions. Its adaptability and cost-effectiveness underscore its clinical utility, making TE-WGS a valuable tool in personalized cancer treatment.
8.Prospective Evaluation of Accelerated Brain MRI Using Deep Learning-Based Reconstruction: Simultaneous Application to 2D Spin-Echo and 3D Gradient-Echo Sequences
Kyu Sung CHOI ; Chanrim PARK ; Ji Ye LEE ; Kyung Hoon LEE ; Young Hun JEON ; Inpyeong HWANG ; Roh Eul YOO ; Tae Jin YUN ; Mi Ji LEE ; Keun-Hwa JUNG ; Koung Mi KANG
Korean Journal of Radiology 2025;26(1):54-64
Objective:
To prospectively evaluate the effect of accelerated deep learning-based reconstruction (Accel-DL) on improving brain magnetic resonance imaging (MRI) quality and reducing scan time compared to that in conventional MRI.
Materials and Methods:
This study included 150 participants (51 male; mean age 57.3 ± 16.2 years). Each group of 50 participants was scanned using one of three 3T scanners from three different vendors. Conventional and Accel-DL MRI images were obtained from each participant and compared using 2D T1- and T2-weighted and 3D gradient-echo sequences. Accel-DL acquisition was achieved using optimized scan parameters to reduce the scan time, with the acquired images reconstructed using U-Net-based software to transform low-quality, undersampled k-space data into high-quality images. The scan times of Accel-DL and conventional MRI methods were compared. Four neuroradiologists assessed the overall image quality, structural delineation, and artifacts using Likert scale (5- and 3-point scales). Inter-reader agreement was assessed using Fleiss’ kappa coefficient. Signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) were calculated, and volumetric quantification of regional structures and white matter hyperintensities (WMHs) was performed.
Results:
Accel-DL showed a mean scan time reduction of 39.4% (range, 24.2%–51.3%). Accel-DL improved overall image quality (3.78 ± 0.71 vs. 3.36 ± 0.61, P < 0.001), structure delineation (2.47 ± 0.61 vs. 2.35 ± 0.62, P < 0.001), and artifacts (3.73 ± 0.72 vs. 3.71 ± 0.69, P = 0.016). Inter-reader agreement was fair to substantial (κ = 0.34–0.50). SNR and CNR increased in Accel-DL (82.0 ± 23.1 vs. 31.4 ± 10.8, P = 0.02; 12.4 ± 4.1 vs. 4.4 ± 11.2, P = 0.02). Bland-Altman plots revealed no significant differences in the volumetric measurements of 98.2% of the relevant regions, except in the deep gray matter, including the thalamus. Five of the six lesion categories showed no significant differences in WMH segmentation, except for leukocortical lesions (r = 0.64 ± 0.29).
Conclusion
Accel-DL substantially reduced the scan time and improved the quality of brain MRI in both spin-echo and gradientecho sequences without compromising volumetry, including lesion quantification.

Result Analysis
Print
Save
E-mail