1.International Severe Asthma Registry (ISAR): 2017–2024 Status and Progress Update
Désirée LARENAS-LINNEMANN ; Chin Kook RHEE ; Alan ALTRAJA ; John BUSBY ; Trung N. TRAN ; Eileen WANG ; Todor A. POPOV ; Patrick D. MITCHELL ; Paul E. PFEFFER ; Roy Alton PLEASANTS ; Rohit KATIAL ; Mariko Siyue KOH ; Arnaud BOURDIN ; Florence SCHLEICH ; Jorge MÁSPERO ; Mark HEW ; Matthew J. PETERS ; David J. JACKSON ; George C. CHRISTOFF ; Luis PEREZ-DE-LLANO ; Ivan CHERREZ- OJEDA ; João A. FONSECA ; Richard W. COSTELLO ; Carlos A. TORRES-DUQUE ; Piotr KUNA ; Andrew N. MENZIES-GOW ; Neda STJEPANOVIC ; Peter G. GIBSON ; Paulo Márcio PITREZ ; Celine BERGERON ; Celeste M. PORSBJERG ; Camille TAILLÉ ; Christian TAUBE ; Nikolaos G. PAPADOPOULOS ; Andriana I. PAPAIOANNOU ; Sundeep SALVI ; Giorgio Walter CANONICA ; Enrico HEFFLER ; Takashi IWANAGA ; Mona S. AL-AHMAD ; Sverre LEHMANN ; Riyad AL-LEHEBI ; Borja G. COSIO ; Diahn-Warng PERNG ; Bassam MAHBOUB ; Liam G. HEANEY ; Pujan H. PATEL ; Njira LUGOGO ; Michael E. WECHSLER ; Lakmini BULATHSINHALA ; Victoria CARTER ; Kirsty FLETTON ; David L. NEIL ; Ghislaine SCELO ; David B. PRICE
Tuberculosis and Respiratory Diseases 2025;88(2):193-215
The International Severe Asthma Registry (ISAR) was established in 2017 to advance the understanding of severe asthma and its management, thereby improving patient care worldwide. As the first global registry for adults with severe asthma, ISAR enabled individual registries to standardize and pool their data, creating a comprehensive, harmonized dataset with sufficient statistical power to address key research questions and knowledge gaps. Today, ISAR is the largest repository of real-world data on severe asthma, curating data on nearly 35,000 patients from 28 countries worldwide, and has become a leading contributor to severe asthma research. Research using ISAR data has provided valuable insights on the characteristics of severe asthma, its burdens and risk factors, real-world treatment effectiveness, and barriers to specialist care, which are collectively informing improved asthma management. Besides changing clinical thinking via research, ISAR aims to advance real-world practice through initiatives that improve registry data quality and severe asthma care. In 2024, ISAR refined essential research variables to enhance data quality and launched a web-based data acquisition and reporting system (QISAR), which integrates data collection with clinical consultations and enables longitudinal data tracking at patient, center, and population levels. Quality improvement priorities include collecting standardized data during consultations and tracking and optimizing patient journeys via QISAR and integrating primary/secondary care pathways to expedite specialist severe asthma management and facilitate clinical trial recruitment. ISAR envisions a future in which timely specialist referral and initiation of biologic therapy can obviate long-term systemic corticosteroid use and enable more patients to achieve remission.
2.International Severe Asthma Registry (ISAR): 2017–2024 Status and Progress Update
Désirée LARENAS-LINNEMANN ; Chin Kook RHEE ; Alan ALTRAJA ; John BUSBY ; Trung N. TRAN ; Eileen WANG ; Todor A. POPOV ; Patrick D. MITCHELL ; Paul E. PFEFFER ; Roy Alton PLEASANTS ; Rohit KATIAL ; Mariko Siyue KOH ; Arnaud BOURDIN ; Florence SCHLEICH ; Jorge MÁSPERO ; Mark HEW ; Matthew J. PETERS ; David J. JACKSON ; George C. CHRISTOFF ; Luis PEREZ-DE-LLANO ; Ivan CHERREZ- OJEDA ; João A. FONSECA ; Richard W. COSTELLO ; Carlos A. TORRES-DUQUE ; Piotr KUNA ; Andrew N. MENZIES-GOW ; Neda STJEPANOVIC ; Peter G. GIBSON ; Paulo Márcio PITREZ ; Celine BERGERON ; Celeste M. PORSBJERG ; Camille TAILLÉ ; Christian TAUBE ; Nikolaos G. PAPADOPOULOS ; Andriana I. PAPAIOANNOU ; Sundeep SALVI ; Giorgio Walter CANONICA ; Enrico HEFFLER ; Takashi IWANAGA ; Mona S. AL-AHMAD ; Sverre LEHMANN ; Riyad AL-LEHEBI ; Borja G. COSIO ; Diahn-Warng PERNG ; Bassam MAHBOUB ; Liam G. HEANEY ; Pujan H. PATEL ; Njira LUGOGO ; Michael E. WECHSLER ; Lakmini BULATHSINHALA ; Victoria CARTER ; Kirsty FLETTON ; David L. NEIL ; Ghislaine SCELO ; David B. PRICE
Tuberculosis and Respiratory Diseases 2025;88(2):193-215
The International Severe Asthma Registry (ISAR) was established in 2017 to advance the understanding of severe asthma and its management, thereby improving patient care worldwide. As the first global registry for adults with severe asthma, ISAR enabled individual registries to standardize and pool their data, creating a comprehensive, harmonized dataset with sufficient statistical power to address key research questions and knowledge gaps. Today, ISAR is the largest repository of real-world data on severe asthma, curating data on nearly 35,000 patients from 28 countries worldwide, and has become a leading contributor to severe asthma research. Research using ISAR data has provided valuable insights on the characteristics of severe asthma, its burdens and risk factors, real-world treatment effectiveness, and barriers to specialist care, which are collectively informing improved asthma management. Besides changing clinical thinking via research, ISAR aims to advance real-world practice through initiatives that improve registry data quality and severe asthma care. In 2024, ISAR refined essential research variables to enhance data quality and launched a web-based data acquisition and reporting system (QISAR), which integrates data collection with clinical consultations and enables longitudinal data tracking at patient, center, and population levels. Quality improvement priorities include collecting standardized data during consultations and tracking and optimizing patient journeys via QISAR and integrating primary/secondary care pathways to expedite specialist severe asthma management and facilitate clinical trial recruitment. ISAR envisions a future in which timely specialist referral and initiation of biologic therapy can obviate long-term systemic corticosteroid use and enable more patients to achieve remission.
3.International Severe Asthma Registry (ISAR): 2017–2024 Status and Progress Update
Désirée LARENAS-LINNEMANN ; Chin Kook RHEE ; Alan ALTRAJA ; John BUSBY ; Trung N. TRAN ; Eileen WANG ; Todor A. POPOV ; Patrick D. MITCHELL ; Paul E. PFEFFER ; Roy Alton PLEASANTS ; Rohit KATIAL ; Mariko Siyue KOH ; Arnaud BOURDIN ; Florence SCHLEICH ; Jorge MÁSPERO ; Mark HEW ; Matthew J. PETERS ; David J. JACKSON ; George C. CHRISTOFF ; Luis PEREZ-DE-LLANO ; Ivan CHERREZ- OJEDA ; João A. FONSECA ; Richard W. COSTELLO ; Carlos A. TORRES-DUQUE ; Piotr KUNA ; Andrew N. MENZIES-GOW ; Neda STJEPANOVIC ; Peter G. GIBSON ; Paulo Márcio PITREZ ; Celine BERGERON ; Celeste M. PORSBJERG ; Camille TAILLÉ ; Christian TAUBE ; Nikolaos G. PAPADOPOULOS ; Andriana I. PAPAIOANNOU ; Sundeep SALVI ; Giorgio Walter CANONICA ; Enrico HEFFLER ; Takashi IWANAGA ; Mona S. AL-AHMAD ; Sverre LEHMANN ; Riyad AL-LEHEBI ; Borja G. COSIO ; Diahn-Warng PERNG ; Bassam MAHBOUB ; Liam G. HEANEY ; Pujan H. PATEL ; Njira LUGOGO ; Michael E. WECHSLER ; Lakmini BULATHSINHALA ; Victoria CARTER ; Kirsty FLETTON ; David L. NEIL ; Ghislaine SCELO ; David B. PRICE
Tuberculosis and Respiratory Diseases 2025;88(2):193-215
The International Severe Asthma Registry (ISAR) was established in 2017 to advance the understanding of severe asthma and its management, thereby improving patient care worldwide. As the first global registry for adults with severe asthma, ISAR enabled individual registries to standardize and pool their data, creating a comprehensive, harmonized dataset with sufficient statistical power to address key research questions and knowledge gaps. Today, ISAR is the largest repository of real-world data on severe asthma, curating data on nearly 35,000 patients from 28 countries worldwide, and has become a leading contributor to severe asthma research. Research using ISAR data has provided valuable insights on the characteristics of severe asthma, its burdens and risk factors, real-world treatment effectiveness, and barriers to specialist care, which are collectively informing improved asthma management. Besides changing clinical thinking via research, ISAR aims to advance real-world practice through initiatives that improve registry data quality and severe asthma care. In 2024, ISAR refined essential research variables to enhance data quality and launched a web-based data acquisition and reporting system (QISAR), which integrates data collection with clinical consultations and enables longitudinal data tracking at patient, center, and population levels. Quality improvement priorities include collecting standardized data during consultations and tracking and optimizing patient journeys via QISAR and integrating primary/secondary care pathways to expedite specialist severe asthma management and facilitate clinical trial recruitment. ISAR envisions a future in which timely specialist referral and initiation of biologic therapy can obviate long-term systemic corticosteroid use and enable more patients to achieve remission.
4.International Severe Asthma Registry (ISAR): 2017–2024 Status and Progress Update
Désirée LARENAS-LINNEMANN ; Chin Kook RHEE ; Alan ALTRAJA ; John BUSBY ; Trung N. TRAN ; Eileen WANG ; Todor A. POPOV ; Patrick D. MITCHELL ; Paul E. PFEFFER ; Roy Alton PLEASANTS ; Rohit KATIAL ; Mariko Siyue KOH ; Arnaud BOURDIN ; Florence SCHLEICH ; Jorge MÁSPERO ; Mark HEW ; Matthew J. PETERS ; David J. JACKSON ; George C. CHRISTOFF ; Luis PEREZ-DE-LLANO ; Ivan CHERREZ- OJEDA ; João A. FONSECA ; Richard W. COSTELLO ; Carlos A. TORRES-DUQUE ; Piotr KUNA ; Andrew N. MENZIES-GOW ; Neda STJEPANOVIC ; Peter G. GIBSON ; Paulo Márcio PITREZ ; Celine BERGERON ; Celeste M. PORSBJERG ; Camille TAILLÉ ; Christian TAUBE ; Nikolaos G. PAPADOPOULOS ; Andriana I. PAPAIOANNOU ; Sundeep SALVI ; Giorgio Walter CANONICA ; Enrico HEFFLER ; Takashi IWANAGA ; Mona S. AL-AHMAD ; Sverre LEHMANN ; Riyad AL-LEHEBI ; Borja G. COSIO ; Diahn-Warng PERNG ; Bassam MAHBOUB ; Liam G. HEANEY ; Pujan H. PATEL ; Njira LUGOGO ; Michael E. WECHSLER ; Lakmini BULATHSINHALA ; Victoria CARTER ; Kirsty FLETTON ; David L. NEIL ; Ghislaine SCELO ; David B. PRICE
Tuberculosis and Respiratory Diseases 2025;88(2):193-215
The International Severe Asthma Registry (ISAR) was established in 2017 to advance the understanding of severe asthma and its management, thereby improving patient care worldwide. As the first global registry for adults with severe asthma, ISAR enabled individual registries to standardize and pool their data, creating a comprehensive, harmonized dataset with sufficient statistical power to address key research questions and knowledge gaps. Today, ISAR is the largest repository of real-world data on severe asthma, curating data on nearly 35,000 patients from 28 countries worldwide, and has become a leading contributor to severe asthma research. Research using ISAR data has provided valuable insights on the characteristics of severe asthma, its burdens and risk factors, real-world treatment effectiveness, and barriers to specialist care, which are collectively informing improved asthma management. Besides changing clinical thinking via research, ISAR aims to advance real-world practice through initiatives that improve registry data quality and severe asthma care. In 2024, ISAR refined essential research variables to enhance data quality and launched a web-based data acquisition and reporting system (QISAR), which integrates data collection with clinical consultations and enables longitudinal data tracking at patient, center, and population levels. Quality improvement priorities include collecting standardized data during consultations and tracking and optimizing patient journeys via QISAR and integrating primary/secondary care pathways to expedite specialist severe asthma management and facilitate clinical trial recruitment. ISAR envisions a future in which timely specialist referral and initiation of biologic therapy can obviate long-term systemic corticosteroid use and enable more patients to achieve remission.
5.International Severe Asthma Registry (ISAR): 2017–2024 Status and Progress Update
Désirée LARENAS-LINNEMANN ; Chin Kook RHEE ; Alan ALTRAJA ; John BUSBY ; Trung N. TRAN ; Eileen WANG ; Todor A. POPOV ; Patrick D. MITCHELL ; Paul E. PFEFFER ; Roy Alton PLEASANTS ; Rohit KATIAL ; Mariko Siyue KOH ; Arnaud BOURDIN ; Florence SCHLEICH ; Jorge MÁSPERO ; Mark HEW ; Matthew J. PETERS ; David J. JACKSON ; George C. CHRISTOFF ; Luis PEREZ-DE-LLANO ; Ivan CHERREZ- OJEDA ; João A. FONSECA ; Richard W. COSTELLO ; Carlos A. TORRES-DUQUE ; Piotr KUNA ; Andrew N. MENZIES-GOW ; Neda STJEPANOVIC ; Peter G. GIBSON ; Paulo Márcio PITREZ ; Celine BERGERON ; Celeste M. PORSBJERG ; Camille TAILLÉ ; Christian TAUBE ; Nikolaos G. PAPADOPOULOS ; Andriana I. PAPAIOANNOU ; Sundeep SALVI ; Giorgio Walter CANONICA ; Enrico HEFFLER ; Takashi IWANAGA ; Mona S. AL-AHMAD ; Sverre LEHMANN ; Riyad AL-LEHEBI ; Borja G. COSIO ; Diahn-Warng PERNG ; Bassam MAHBOUB ; Liam G. HEANEY ; Pujan H. PATEL ; Njira LUGOGO ; Michael E. WECHSLER ; Lakmini BULATHSINHALA ; Victoria CARTER ; Kirsty FLETTON ; David L. NEIL ; Ghislaine SCELO ; David B. PRICE
Tuberculosis and Respiratory Diseases 2025;88(2):193-215
The International Severe Asthma Registry (ISAR) was established in 2017 to advance the understanding of severe asthma and its management, thereby improving patient care worldwide. As the first global registry for adults with severe asthma, ISAR enabled individual registries to standardize and pool their data, creating a comprehensive, harmonized dataset with sufficient statistical power to address key research questions and knowledge gaps. Today, ISAR is the largest repository of real-world data on severe asthma, curating data on nearly 35,000 patients from 28 countries worldwide, and has become a leading contributor to severe asthma research. Research using ISAR data has provided valuable insights on the characteristics of severe asthma, its burdens and risk factors, real-world treatment effectiveness, and barriers to specialist care, which are collectively informing improved asthma management. Besides changing clinical thinking via research, ISAR aims to advance real-world practice through initiatives that improve registry data quality and severe asthma care. In 2024, ISAR refined essential research variables to enhance data quality and launched a web-based data acquisition and reporting system (QISAR), which integrates data collection with clinical consultations and enables longitudinal data tracking at patient, center, and population levels. Quality improvement priorities include collecting standardized data during consultations and tracking and optimizing patient journeys via QISAR and integrating primary/secondary care pathways to expedite specialist severe asthma management and facilitate clinical trial recruitment. ISAR envisions a future in which timely specialist referral and initiation of biologic therapy can obviate long-term systemic corticosteroid use and enable more patients to achieve remission.
6.Relationship between sarcopenia and cardiovascular disease among middle-aged and older adults with normal weight in China: functional limitation plays a mediating role.
Hui CHENG ; Zhihui JIA ; Jiaheng CHEN ; Yao Jie XIE ; Jose HERNANDEZ ; Harry H X WANG
Environmental Health and Preventive Medicine 2025;30():46-46
BACKGROUND:
Cardiovascular disease (CVD) is the predominant cause of mortality in China. However, the mechanisms linking sarcopenia to CVD remain poorly understood, particularly in normal-weight populations. Individuals with the absence of overweight or obesity may tend to experience missed opportunities for timely intervention. This study aimed to investigate the longitudinal association between sarcopenia and incidence of new-onset CVD in a normal-weight population, and to examine the mediating effect of functional limitation in this relationship.
METHODS:
We conducted a closed-cohort analysis using a nationwide sample of 4,147 middle-aged and older adults with normal weight in China. We performed Cox proportional hazards regression analysis to explore the associations of baseline sarcopenia with incident CVD. The difference method was applied to estimate the mediation proportion of functional limitation in this association.
RESULTS:
Over a mean follow-up period of 7.62 years, CVD occurred in 835 participants. In the multivariable-adjusted Cox model, individuals with sarcopenia exhibited a significantly higher likelihood of developing incident CVD compared to those without sarcopenia (adjusted hazard ratio [aHR] = 1.45, 95% confidence interval [CI]: 1.21-1.73, P < 0.001). Similar associations were observed for the incidence of heart disease and stroke. Functional limitation accounted for approximately 15.0% of the total effect of sarcopenia on incident CVD (P < 0.001).
CONCLUSIONS
Sarcopenia exerts both direct and indirect effects on incident CVD among middle-aged and older adults who are normal weight, with functional limitation serving as a significant mediator. Interventions targeting both sarcopenia and functional limitation may offer a promising strategy for enhancing cardiovascular health in this population.
Humans
;
Sarcopenia/complications*
;
China/epidemiology*
;
Male
;
Female
;
Middle Aged
;
Cardiovascular Diseases/etiology*
;
Aged
;
Incidence
;
Cohort Studies
;
Proportional Hazards Models
;
Risk Factors
;
Aged, 80 and over
;
Longitudinal Studies
7.Enzyme-independent functions of HDAC3 in the adult heart.
Sichong QIAN ; Chen ZHANG ; Wenbo LI ; Shiyang SONG ; Guanqiao LIN ; Zixiu CHENG ; Wenjun ZHOU ; Huiqi YIN ; Yueli WANG ; Haiyang LI ; Ying H SHEN ; Zheng SUN
Acta Pharmaceutica Sinica B 2025;15(7):3561-3574
The cardioprotective effects of histone deacetylase (HDAC) inhibitors (HDIs) are at odds with the deleterious effects of HDAC depletion. Here, we use HDAC3 as a prototype HDAC to address this contradiction. We show that adult-onset cardiac-specific depletion of HDAC3 in mice causes cardiac hypertrophy and contractile dysfunction on a high-fat diet (HFD), excluding developmental disruption as a major reason for the contradiction. Genetically abolishing HDAC3 enzymatic activity without affecting its protein level does not cause cardiac dysfunction on HFD. HDAC3 depletion causes robust downregulation of lipid oxidation/bioenergetic genes and upregulation of antioxidant/anti-apoptotic genes. In contrast, HDAC3 enzyme activity abolishment causes much milder changes in far fewer genes. The abnormal gene expression is cardiomyocyte-autonomous and can be rescued by an enzyme-dead HDAC3 mutant but not by an HDAC3 mutant (Δ33-70) that lacks interaction with the nuclear-envelope protein lamina-associated polypeptide 2β (LAP2β). Tethering LAP2β to the HDAC3 Δ33-70 mutant restored its ability to rescue gene expression. Finally, HDAC3 depletion, not loss of HDAC3 enzymatic activity, exacerbates cardiac contractile functions upon aortic constriction. These results suggest that the cardiac function of HDAC3 in adults is not attributable to its enzyme activity, which has implications for understanding the cardioprotective effects of HDIs.
8.Divergent activation patterns of BRS3 revealed by two Chinese herb-derived agonists.
Jie LI ; Changyao LI ; Qingtong ZHOU ; Wei HAN ; Mingzhu FANG ; Youwei XU ; Yiting MAI ; Yao ZHANG ; Jiahua CUI ; H Eric XU ; Yan ZHANG ; Wanchao YIN ; Ming-Wei WANG
Acta Pharmaceutica Sinica B 2025;15(10):5231-5243
Bombesin receptor subtype-3 (BRS3) is an orphan G protein-coupled receptor (GPCR) that plays critical roles in energy homeostasis, glucose metabolism, and insulin secretion. Recent structural studies have elucidated BRS3 signaling mechanisms using synthetic ligands, including BA1 and MK-5046. However, the molecular basis of BRS3 activation by bioactive natural compounds and their derivatives, particularly those derived from traditional Chinese medicine, remains unclear. Here, we present high-resolution cryogenic electron microscopy (cryo-EM) structures of the human BRS3-Gq complex in both unliganded and active states bound by two herb-derived compounds (DSO-5a and oridonin), at resolutions of 2.9, 2.8, and 2.9 Å, respectively. These structures display distinct ligand recognition patterns between DSO-5a and oridonin. Although both compounds bind to the orthosteric pocket, they differentially engage the interaction network of BRS3, as demonstrated by mutagenesis studies assessing calcium mobilization and inositol phosphate 1 (IP1) accumulation. These findings enhance our understanding of BRS3 activation and provide valuable insights into the development of small-molecule BRS3 modulators with therapeutic potential.
9.Imaging poly(ADP-ribose) polymerase-1 (PARP1) in vivo with 18F-labeled brain penetrant positron emission tomography (PET) ligand.
Xin ZHOU ; Jiahui CHEN ; Jimmy S PATEL ; Wenqing RAN ; Yinlong LI ; Richard S VAN ; Mostafa M H IBRAHIM ; Chunyu ZHAO ; Yabiao GAO ; Jian RONG ; Ahmad F CHAUDHARY ; Guocong LI ; Junqi HU ; April T DAVENPORT ; James B DAUNAIS ; Yihan SHAO ; Chongzhao RAN ; Thomas L COLLIER ; Achi HAIDER ; David M SCHUSTER ; Allan I LEVEY ; Lu WANG ; Gabriel CORFAS ; Steven H LIANG
Acta Pharmaceutica Sinica B 2025;15(10):5036-5049
Poly(ADP-ribose) polymerase 1 (PARP1) is a multifunctional protein involved in diverse cellular functions, notably DNA damage repair. Pharmacological inhibition of PARP1 has therapeutic benefits for various pathologies. Despite the increased use of PARP inhibitors, challenges persist in achieving PARP1 selectivity and effective blood-brain barrier (BBB) penetration. The development of a PARP1-specific positron emission tomography (PET) radioligand is crucial for understanding disease biology and performing target occupancy studies, which may aid in the development of PARP1-specific inhibitors. In this study, we leverage the recently identified PARP1 inhibitor, AZD9574, to introduce the design and development of its 18F-isotopologue ([18F]AZD9574). Our comprehensive approach, encompassing pharmacological, cellular, autoradiographic, and in vivo PET imaging evaluations in non-human primates, demonstrates the capacity of [18F]AZD9574 to specifically bind to PARP1 and to successfully penetrate the BBB. These findings position [18F]AZD9574 as a viable molecular imaging tool, poised to facilitate the exploration of pathophysiological changes in PARP1 tissue abundance across various diseases.
10.Anti-cancer and anti-inflammatory effects of flavan-4-ol and flavan glycosides from the roots of Pronephrium penangianum.
Feibing HUANG ; Yong YANG ; Qingling XIE ; Hanwen YUAN ; Muhammad AAMER ; Yuqing JIAN ; Ye ZHANG ; Wei WANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):593-603
Five new flavan-4-ol glycosides jixueqiosides A-E (1-5) and two new flavan glycosides jixueqiosides F and G (6 and 7), along with twelve known flavan-4-ol glycosides (8-19), were isolated from the roots of Pronephrium penangianum. Comprehensive spectral analyses, X-ray single-crystal diffraction, and theoretical electronic circular dichroism (ECD) calculations established structures and absolute configurations. A single crystal structure of flavan-4-ol glycoside (14) was reported for the first time, while the characteristic ECD and NMR data for all isolated flavan-4-ol glycosides (1-5 , 8-19) were analyzed, establishing a set of empirical rules. Activity screening of these isolates showed that 8 and 9 could inhibit the proliferation of MDA-MB-231 and MCF-7 cells with IC50 values of 7.93 ? 2.85 ?mol?L-1 and 5.87 ? 1.58 ?mol?L-1 (MDA-MB-231), and 2.21 ? 1.38 ?mol?L-1 and 3.52 ? 1.55 ?mol?L-1 (MCF-7), respectively. Western blotting and flow cytometry analyses demonstrated that 8 and 9 dose-dependently induced apoptosis in MDA-MB-231 cells by up-regulating BAX, activating caspase-3 and down-regulating BCL-2. Additionally, compound 8 affected autophagy-related proteins, increasing the ratio of LC3-II/LC3-I and Beclin-1 levels to inhibit MDA-MB-231 cell proliferation. Moreover, anti-inflammatory studies indicated that 2, 3, 7, 13, 14, and 18 moderately inhibited tumor necrosis factor-a (TNF-a), interleukin-6 (IL-6), and nitric oxide (NO) release.
Humans
;
Plant Roots/chemistry*
;
Glycosides/isolation & purification*
;
Anti-Inflammatory Agents/isolation & purification*
;
Flavonoids/isolation & purification*
;
Cell Proliferation/drug effects*
;
Antineoplastic Agents, Phytogenic/isolation & purification*
;
Molecular Structure
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Tumor Necrosis Factor-alpha/immunology*
;
Drugs, Chinese Herbal/pharmacology*
;
Interleukin-6/immunology*
;
Animals
;
Mice

Result Analysis
Print
Save
E-mail