1.One-year seedling cultivation technology and seed germination-promoting mechanism by warm water soaking of Polygonatum kingianum var. grandifolium.
Ke FU ; Jian-Qing ZHOU ; Zhi-Wei FAN ; Mei-Sen YANG ; Ya-Qun CHENG ; Yan ZHU ; Yan SHI ; Jin-Ping SI ; Dong-Hong CHEN
China Journal of Chinese Materia Medica 2025;50(4):1022-1030
Polygonati Rhizoma demonstrates significant potential for addressing both chronic and hidden hunger. The supply of high-quality seedlings is a primary factor influencing the development of the Polygonati Rhizoma industry. Warm water soaking is often used in agriculture to promote the rapid germination of seeds, while its application and molecular mechanism in Polygonati Rhizoma have not been reported. To rapidly obtain high-quality seedlings, this study treated Polygonatum kingianum var. grandifolium seeds with sand storage at low temperatures, warm water soaking, and cultivation temperature gradients. The results showed that the culture at 25 ℃ or sand storage at 4 ℃ for 2 months rapidly broke the seed dormancy of P. kingianum var. grandifolium, while the culture at 20 ℃ or sand storage at 4 ℃ for 1 month failed to break the seed dormancy. Soaking seeds in 60 ℃ warm water further increased the germination rate, germination potential, and germination index. Specifically, the seeds soaked at 60 ℃ and cultured at 25 ℃ without sand storage treatment(Aa25) achieved a germination rate of 78. 67%±1. 53% on day 42 and 83. 40%±4. 63% on day 77. The seeds pretreated with sand storage at 4 ℃ for 2 months, soaked in 60 ℃ water, and then cultured at 25 ℃ achieved a germination rate comparable to that of Aa25 on day 77. Transcriptomic analysis indicated that warm water soaking might promote germination by triggering reactive oxygen species( ROS), inducing the expression of heat shock factors( HSFs) and heat shock proteins( HSPs), which accelerated DNA replication, transcript maturation, translation, and processing, thereby facilitating the accumulation and turnover of genetic materials. According to the results of indoor controlled experiments and field practices, maintaining a germination and seedling cultivation environment at approximately 25 ℃ was crucial for the one-year seedling cultivation of P. kingianum var. grandifolium.
Germination
;
Seedlings/genetics*
;
Water/metabolism*
;
Seeds/metabolism*
;
Polygonatum/genetics*
;
Temperature
;
Plant Proteins/genetics*
;
Plant Dormancy
2.Imaging poly(ADP-ribose) polymerase-1 (PARP1) in vivo with 18F-labeled brain penetrant positron emission tomography (PET) ligand.
Xin ZHOU ; Jiahui CHEN ; Jimmy S PATEL ; Wenqing RAN ; Yinlong LI ; Richard S VAN ; Mostafa M H IBRAHIM ; Chunyu ZHAO ; Yabiao GAO ; Jian RONG ; Ahmad F CHAUDHARY ; Guocong LI ; Junqi HU ; April T DAVENPORT ; James B DAUNAIS ; Yihan SHAO ; Chongzhao RAN ; Thomas L COLLIER ; Achi HAIDER ; David M SCHUSTER ; Allan I LEVEY ; Lu WANG ; Gabriel CORFAS ; Steven H LIANG
Acta Pharmaceutica Sinica B 2025;15(10):5036-5049
Poly(ADP-ribose) polymerase 1 (PARP1) is a multifunctional protein involved in diverse cellular functions, notably DNA damage repair. Pharmacological inhibition of PARP1 has therapeutic benefits for various pathologies. Despite the increased use of PARP inhibitors, challenges persist in achieving PARP1 selectivity and effective blood-brain barrier (BBB) penetration. The development of a PARP1-specific positron emission tomography (PET) radioligand is crucial for understanding disease biology and performing target occupancy studies, which may aid in the development of PARP1-specific inhibitors. In this study, we leverage the recently identified PARP1 inhibitor, AZD9574, to introduce the design and development of its 18F-isotopologue ([18F]AZD9574). Our comprehensive approach, encompassing pharmacological, cellular, autoradiographic, and in vivo PET imaging evaluations in non-human primates, demonstrates the capacity of [18F]AZD9574 to specifically bind to PARP1 and to successfully penetrate the BBB. These findings position [18F]AZD9574 as a viable molecular imaging tool, poised to facilitate the exploration of pathophysiological changes in PARP1 tissue abundance across various diseases.
3.Improvement of catalytic activity and thermostability of glucose oxidase from Aspergillus heteromorphus.
Shanglin YU ; Qiao ZHOU ; Honghai ZHANG ; Yingguo BAI ; Huiying LUO ; Xiaojun YANG ; Bin YAO
Chinese Journal of Biotechnology 2025;41(1):296-307
Glucose oxidase (GOD) is an oxygen-consuming dehydrogenase that can catalyze the production of gluconic acid hydrogen peroxide from glucose, and its specific mechanism of action makes it promising for applications, while the low catalytic activity and poor thermostability have become the main factors limiting the industrial application of this enzyme. In this study, we used the glucose oxidase AtGOD reported with the best thermostability as the source sequence for phylogenetic analysis to obtain the GOD with excellent performance. Six genes were screened and successfully synthesized for functional validation. Among them, the glucose oxidase AhGODB derived from Aspergillus heteromorphus was expressed in Pichia pastoris and showed better thermostability and catalytic activity, with an optimal temperature of 40 ℃, a specific activity of 112.2 U/mg, and a relative activity of 47% after 5 min of treatment at 70 ℃. To improve its activity and thermal stability, we constructed several mutants by directed evolution combined with rational design. Compared with the original enzyme, the mutant T72R/A153P showcased the optimum temperature increasing from 40 to 50 ℃, the specific activity increasing from 112.2 U/mg to 166.1 U/mg, and the relative activity after treatment at 70 ℃ for 30 min increasing from 0% to 33%. In conclusion, the glucose oxidase mutants obtained in this study have improved catalytic activity and thermostability, and have potential for application.
Glucose Oxidase/chemistry*
;
Enzyme Stability
;
Aspergillus/genetics*
;
Pichia/metabolism*
;
Temperature
;
Catalysis
;
Fungal Proteins/metabolism*
;
Hot Temperature
4.The correlation between No. 6 and No. 14v lymph node metastasis and the value of dissecting these lymph nodes in radical gastrectomy.
Q C YANG ; H K ZHOU ; C YUE ; W D WANG ; R Q GAO ; Z C MO ; P P JI ; J P WEI ; X S YANG ; P F YU ; X H LI ; G JI
Chinese Journal of Gastrointestinal Surgery 2023;26(1):38-43
Radical gastrectomy with D2 lymphadenectomy has been widely performed as the standard surgery for patients with gastric cancer in major medical centers in China and abroad. However, the exact extent of lymph node dissection is still controversial. In the latest version of the Japanese Gastric Cancer Treatment Guidelines, No. 14v lymph nodes (along the root of the superior mesenteric vein) are again defined as loco-regional lymph nodes, and it is clarified that distal gastric cancer presenting with infra-pyloric regional lymph node (No.6) metastasis is recommended for D2+ superior mesenteric vein (No. 14v) lymph node dissection. To explore the relevance and clinical significance of No.6 and No.14v lymphadenectomy in radical gastric cancer surgery, a review of the national and international literature revealed that No.6 lymph node metastasis was associated with No.14v lymph node metastasis, that No.6 lymph node status was a valid predictor of No.14v lymph node negative status and false negative rate, and that for gastric cancer patients with No. 14v lymph node negative and No.6 lymph node positive, the dissection of No.14v lymph node may also have some significance. The addition of No. 14v lymph node dissection in radical gastrectomy is safe, but it is more important to distinguish the patients who can benefit from it. Professor Liang Han of Tianjin Medical University Cancer Hospital is currently leading a multicenter, large-sample, prospective clinical trial (NCT02272894) in China, which is expected to provide higher level evidence for the clinical significance of lymph node dissection in No.14v.
Humans
;
Stomach Neoplasms/pathology*
;
Lymphatic Metastasis/pathology*
;
Prospective Studies
;
Retrospective Studies
;
Lymph Nodes/pathology*
;
Lymph Node Excision
;
Gastrectomy
;
Multicenter Studies as Topic
5.Enzyme production mechanism of anaerobic fungus Orpinomyces sp. YF3 in yak rumen induced by different carbon source.
Xue'er DU ; Linlin ZHOU ; Fan ZHANG ; Yong LI ; Congcong ZHAO ; Lamei WANG ; Junhu YAO ; Yangchun CAO
Chinese Journal of Biotechnology 2023;39(12):4927-4938
In order to investigate the enzyme production mechanism of yak rumen-derived anaerobic fungus Orpinomyces sp. YF3 under the induction of different carbon sources, anaerobic culture tubes were used for in vitro fermentation. 8 g/L of glucose (Glu), filter paper (Flp) and avicel (Avi) were respectively added to 10 mL of basic culture medium as the sole carbon source. The activity of fiber-degrading enzyme and the concentration of volatile fatty acid in the fermentation liquid were detected, and the enzyme producing mechanism of Orpinomyces sp. YF3 was explored by transcriptomics. It was found that, in glucose-induced fermentation solution, the activities of carboxymethyl cellulase, microcrystalline cellulase, filter paper enzyme, xylanase and the proportion of acetate were significantly increased (P < 0.05), the proportion of propionate, butyrate, isobutyrate were significantly decreased (P < 0.05). The results of transcriptome analysis showed that there were 5 949 differentially expressed genes (DEGs) between the Glu group and the Flp group, 10 970 DEGs between the Glu group and the Avi group, and 6 057 DEGs between the Flp group and the Avi group. It was found that the DEGs associated with fiber degrading enzymes were significantly up-regulated in the Glu group. Gene ontology (GO) function enrichment analysis identified that DEGs were mainly associated with the xylan catabolic process, hemicellulose metabolic process, β-glucan metabolic process, cellulase activity, endo-1,4-β-xylanase activity, cell wall polysaccharide metabolic process, carbohydrate catabolic process, glucan catabolic process and carbohydrate metabolic process. Moreover, the differentially expressed pathways associated with fiber degrading enzymes enriched by Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were mainly starch and sucrose metabolic pathways and other glycan degradation pathways. In conclusion, Orpinomyces sp. YF3 with glucose as carbon source substrate significantly increased the activity of cellulose degrading enzyme and the proportion of acetate, decreased the proportion of propionate, butyrate and isobutyrate. Furthermore, the degradation ability and energy utilization efficiency of fungus in the presence of glucose were improved by means of regulating the expression of cellulose degrading enzyme gene and participating in starch and sucrose metabolism pathway, and other glycan degradation pathways, which provides a theoretical basis for the application of Orpinomyces sp. YF3 in practical production and facilitates the application of Orpinomyces sp. YF3 in the future.
Animals
;
Cattle
;
Neocallimastigales/metabolism*
;
Anaerobiosis
;
Rumen/microbiology*
;
Propionates/metabolism*
;
Isobutyrates/metabolism*
;
Cellulose/metabolism*
;
Fungi
;
Starch/metabolism*
;
Glucose/metabolism*
;
Acetates
;
Sucrose/metabolism*
;
Cellulases
;
Cellulase
6.Hepatocyte apoptosis fragment product cytokeratin-18 M30 level and non-alcoholic steatohepatitis risk diagnosis: an international registry study.
Huai ZHANG ; Rafael S RIOS ; Jerome BOURSIER ; Rodolphe ANTY ; Wah-Kheong CHAN ; Jacob GEORGE ; Yusuf YILMAZ ; Vincent Wai-Sun WONG ; Jiangao FAN ; Jean-François DUFOUR ; George PAPATHEODORIDIS ; Li CHEN ; Jörn M SCHATTENBERG ; Junping SHI ; Liang XU ; Grace Lai-Hung WONG ; Naomi F LANGE ; Margarita PAPATHEODORIDI ; Yuqiang MI ; Yujie ZHOU ; Christopher D BYRNE ; Giovanni TARGHER ; Gong FENG ; Minghua ZHENG
Chinese Medical Journal 2023;136(3):341-350
BACKGROUND:
Liver biopsy for the diagnosis of non-alcoholic steatohepatitis (NASH) is limited by its inherent invasiveness and possible sampling errors. Some studies have shown that cytokeratin-18 (CK-18) concentrations may be useful in diagnosing NASH, but results across studies have been inconsistent. We aimed to identify the utility of CK-18 M30 concentrations as an alternative to liver biopsy for non-invasive identification of NASH.
METHODS:
Individual data were collected from 14 registry centers on patients with biopsy-proven non-alcoholic fatty liver disease (NAFLD), and in all patients, circulating CK-18 M30 levels were measured. Individuals with a NAFLD activity score (NAS) ≥5 with a score of ≥1 for each of steatosis, ballooning, and lobular inflammation were diagnosed as having definite NASH; individuals with a NAS ≤2 and no fibrosis were diagnosed as having non-alcoholic fatty liver (NAFL).
RESULTS:
A total of 2571 participants were screened, and 1008 (153 with NAFL and 855 with NASH) were finally enrolled. Median CK-18 M30 levels were higher in patients with NASH than in those with NAFL (mean difference 177 U/L; standardized mean difference [SMD]: 0.87 [0.69-1.04]). There was an interaction between CK-18 M30 levels and serum alanine aminotransferase, body mass index (BMI), and hypertension ( P < 0.001, P = 0.026 and P = 0.049, respectively). CK-18 M30 levels were positively associated with histological NAS in most centers. The area under the receiver operating characteristics (AUROC) for NASH was 0.750 (95% confidence intervals: 0.714-0.787), and CK-18 M30 at Youden's index maximum was 275.7 U/L. Both sensitivity (55% [52%-59%]) and positive predictive value (59%) were not ideal.
CONCLUSION
This large multicenter registry study shows that CK-18 M30 measurement in isolation is of limited value for non-invasively diagnosing NASH.
Humans
;
Non-alcoholic Fatty Liver Disease/diagnosis*
;
Keratin-18
;
Biomarkers
;
Biopsy
;
Hepatocytes/pathology*
;
Apoptosis
;
Liver/pathology*
7.Pathological features and diagnostic significance of lung biopsy in occupational lung diseases.
T WANG ; Y FU ; M MA ; J ZHOU ; Q SUN ; A N FENG ; F Q MENG
Chinese Journal of Pathology 2023;52(11):1114-1119
Objective: To investigate the clinicopathological characteristics of occupational lung diseases, to reduce the missed diagnoses and misdiagnoses of the diseases and to help standardize the diagnosis and treatment of these patients. Methods: A total of 4 813 lung biopsy specimens (including 1 935 consultation cases) collected at the Department of Pathology, Nanjing Drum Tower Hospital, Nanjing, China from January 1st, 2017 to December 31th, 2019 were retrospectively analyzed. Among them, 126 cases of occupational lung diseases were confirmed with clinical-radiological-pathological diagnosis. Special staining, PCR and scanning electron microscopy were also used to rule out the major differential diagnoses. Results: The 126 patients with occupational lung diseases included 102 males and 24 females. All of them had a history of exposure to occupational risk factor(s). Morphologically, 68.3% (86/126) of the cases mainly showed pulmonary fibrotic nodules, dust plaque formation or carbon end deposition in pulmonary parenchyma. 16.7% (21/126) of the cases mainly showed welding smoke particle deposition in the alveolar cavity and lung interstitium while 15.1% (19/126) of the cases showed granulomas with fibrous tissue hyperplasia, alveolar protein deposition or giant cell interstitial pneumonia. The qualitative and semi-quantitative analyses of residual dust components in the lung under scanning electron microscope were helpful for the diagnosis of welder's pneumoconiosis and hard metal lung disease. Conclusions: The morphological characteristics of lung biopsy tissue are important reference basis for the clinicopathological diagnosis and differential diagnosis of occupational lung diseases. Recognizing the characteristic morphology and proper use of auxiliary examination are the key to an accurate diagnosis of occupational lung diseases on biopsy specimens.
Male
;
Female
;
Humans
;
Retrospective Studies
;
Pneumoconiosis/pathology*
;
Lung/pathology*
;
Dust
;
Pneumonia, Viral/pathology*
;
Biopsy
8.Study on protective effects of Shiyifang medicinal wine on knee osteoarthritis in rabbits based on TLR 4/MyD88/ NF-кB signaling pathway
Wentao ZHANG ; Lingmei ZHOU ; Honghai HUANG ; Huihui BAO ; Dewen MAO ; Hui TIAN ; Shuling LIU
China Pharmacy 2022;33(18):2224-2229
OBJECTIVE To study the protective effect and mechanism of Shiyifang medicinal wine (SYF) on knee osteoarthritis(KOA)of rabbit induced by papain . METHODS Thirty-five rabbits were randomly divided into blank group ,model group,positive group (Diclofenac diethylamine emulsion 200 mg/kg),SYF high -dose group (386 mg/kg)and SYF low -dose group(97 mg/kg),with 7 rabbits in each group (all had 4 males and 3 females). Except for the blank group ,the other groups ’ rabbits were injected 0.5 mL papain mixture (containing 2% papain and 0.03 mol/L L -cysteine)into the right knee cavity on day 1, 4 and 7,to replicate KOA model . Blank group was given constant volume of normal saline . From the 15th day ,drugs were applied to right hind knee joints of rabbits in each group ,twice a day for 20 days. At the same time ,the diameter of right knee joints of rabbits was measured by vernier calipers at day 0,8,14 and 35 to calculate swelling degree . After the experiment ,the levels of IL-1β,TNF-α and PGE 2 in synovial tissue were determined by enzyme -linked immunosorbent assay . Hematoxylin-eosin(HE) staining was used to prepare the sections of synovial tissue ,and the pathological changes were observed . The relative mRNA expressions of TLR 4,MyD88 and NF - кB p 65 in the TLR 4/MyD88/NF- кB signaling pathway were detected by real -time quantitative polymerase chain reaction . The relative protein expressions of TLR 4,MyD88,NF-кB p 65 and p -NF-кB p 65 were detect by Western blot . RESULTS Compared with blank group,the degree of knee swelling could be increased in model group ,the pathological damage of synovial tissue was more serious ,and the levels of IL -1β,TNF-α and PGE 2 were increased significantly in synovial tissue (P<0.05). The relative expression levels of TLR 4,MyD88,NF-кB p 65 mRNAs and TLR 4,MyD88,p-NF-кB p 65 proteins were significantly increased(P<0.05). Compared with model group ,swelling degree of right hind knee and the pathological injury degree of synovial tissue were significantly improved in each treatment group ,while the levels of IL -1β,TNF-α and PGE 2 in synovial tissue were significantly decreased (P<0.05). The relative mRNA expressions of TLR 4,MyD88 and NF -кB p 65 and relative protein expressions of TLR 4,MyD88(except for SYF low -dose group )and p -NF-кB p 65 were all significantly decreased (P<0.05). CONCLUSIONS SYF shows protective effect on KOA induced by papain ,the mechanism of which is associated with decreasing the levels of IL -1β,TNF-α and PGE 2 and down -regulating TLR 4/MyD88/NF-кB signaling pathway .
9.Progress in intestinal adaptation after enterectomy.
H F SUN ; Q B ZHOU ; W X WANG ; F Q WANG ; Q Q ZHANG ; Z Q SUN ; W T YUAN
Chinese Journal of Gastrointestinal Surgery 2022;25(12):1132-1137
Intestinal adaptation is a spontaneous compensation of the remanent bowel after extensive enterectomy, which improves the absorption capacity of the remanent bowel to energy, fluid and other nutrients. Intestinal adaptation mainly occurs within 2 years after enterectomy, including morphological changes, hyperfunction and hyperphagia. Intestinal adaptation is the key factor for patients with short bowel syndrome to weaning off parenteral nutrition dependence and mainly influenced by length of remanent bowel, type of surgery and colon continuity. In addition, multiple factors including enteral feeding, glucagon-like peptide 2 (GLP-2), growth hormone, gut microbiota and its metabolites regulate intestinal adaptation via multi-biological pathways, such as proliferation and differentiation of stem cell, apoptosis, angiogenesis, nutrients transport related protein expression, gut endocrine etc. Phase III clinical trials have verified the safety and efficacy of teduglutide (long-acting GLP-2) and somatropin (recombinant human growth hormone) in improving intestinal adaptation, and both have been approved for clinical use. We aim to review the current knowledge about characteristics, mechanism, evaluation methods, key factors, clinical strategies of intestinal adaptation.
Humans
;
Adaptation, Physiological
;
Glucagon-Like Peptide 2/therapeutic use*
;
Intestines/surgery*
;
Parenteral Nutrition
;
Short Bowel Syndrome/surgery*
10.Transcriptome characteristics of H1N1 influenza virus infected primary human retinal pigment epithelial cells
Hongli RAN ; Jinmin TIAN ; Yang HAN ; Zhangfu CHEN ; Yingze ZHAO ; Yu LAN ; J. William LIU ; Xiangtian ZHOU ; F. George GAO
Chinese Journal of Experimental and Clinical Virology 2022;36(5):535-540
Objective:Using high-throughput transcriptome sequencing technology to study the differentially expressed genes (DEGs) and related regulatory signaling pathways involved in H1N1 influenza virus infection in primary human retinal pigment epithelial (RPE) cells.Methods:Primary human RPE cells were infected with H1N1 influenza virus for 2 h or 12 h, respectively. Taking H1N1 uninfected cells as a control group, total RNA was extracted, a library was constructed, and transcriptome sequencing was performed. DEGs were screened by DESeq2 software, and DEGs were analyzed by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway.Results:Compared with the control group, a total of 1830 DEGs were identified in the 2 h H1N1 influenza virus infection group, and 2847 DEGs were identified in the 12 h infection group; 1213 DEGs were identified in the H1N1 influenza virus infection kinetics process (2 h: 12 h). The GO functional annotation analysis of DEGs in the H1N1 influenza virus infection group for 12 h showed that DEGs widely exist in a variety of cellular components and participate in various biological processes such as cellular processes, biological regulation, and metabolic processes. KEGG pathway enrichment analysis showed that DEGs were mainly enriched in the PI3K-Akt signaling pathway, MAPK signaling pathway, cancer MicroRNAs, and cytokine-cytokine receptor interactions in the 2 h H1N1 influenza virus infection group; in the 12 h H1N1 influenza virus infection group, DEGs were mainly enriched in PI3K-Akt signaling pathway, cancer MicroRNAs, AGE-RAGE signaling pathway and immune-inflammatory pathways; during the kinetics of H1N1 influenza virus infection (2 h: 12 h), DEGs were mainly enriched in cytokine-cytokine receptor interaction, TGF-β signaling pathway.Conclusions:Infection with H1N1 influenza virus leads to significant changes in the transcriptome of RPE cells. These data provide scientific reference for elucidating the molecular mechanism of eye infection by respiratory viruses such as influenza virus.

Result Analysis
Print
Save
E-mail