1.Pachymic acid promotes brown/beige adipocyte differentiation and lipid metabolism in preadipocytes.
Kunling CHEN ; Xiaobing DOU ; Yiyou LIN ; Danyao BAI ; Yangzhou LUO ; Liping ZHOU
Journal of Zhejiang University. Medical sciences 2025;54(3):333-341
OBJECTIVES:
To investigate the effect of pachymic acid on brown/beige adipocyte differentiation and lipid metabolism in preadipocytes.
METHODS:
3T3-L1 MBX cells were induced to differentiate into beige adipocytes using a brown cocktail method. The impact of pachymic acid on the viability of 3T3-L1 MBX cells was evaluated using the CCK-8 assay. The formation of lipid droplets following treatment with pachymic acid was observed by oil red O staining. The mRNA expression levels of key browning genes, including uncoupling protein (Ucp) 1, the peroxisome proliferator activated receptor-γ coactivator (Pgc)-1α, and the PR domain-containing protein 16 (Prdm16), as well as the mRNA expression of sterol regulatory element-binding protein (Srebp) 1c, acetyl-coA carboxylase (Acc), fatty acid synthase (Fas), and hormone-sensitive triglyceride lipase (Hsl), adipose triglyceride lipase (Atgl), and carnitine palmitoyltransferase (Cpt) 1 were detected by quantitative reverse transcription polymerase chain reaction. The protein expression of Ucp1, Pgc-1a, and Prdm16 was detected by Western blotting.
RESULTS:
The 3T3-L1 MBX cells were induced in vitro to form beige adipocytes with high expression of key browning genes(Ucp1, Pgc-1α, and Prdm16), and beige adipose-marker genes (Cd137, Tbx1, and Tmem26). Concentrations range of 0-80 μmol/L pachymic acid were non-cytotoxic to 3T3-L1 MBX cells. Pachymic acid treatment significantly inhibited the differentiation of 3T3-L1 MBX cells, resulting in a notable decrease in lipid accumulation. There was a marked increase in the expression of key browning genes and their proteins products, such as Ucp1, Pgc-1α, and Prdm16, while the expressions of fat synthesis-related genes Srebp1c, Acc and Fas were significantly decreased (all P<0.05). The expressions of lipolysis-related genes (Hsl, Atgl, and Cpt1) were significantly increased (all P<0.05). Treatment with 20 μmol/L pachymic acid showed the most pronounced effect.
CONCLUSIONS
Pachymic acid can inhibit fat synthesis and promote lipid decomposition by regulating the brown formation and lipid differentiation of preadipocytes.
Animals
;
Lipid Metabolism/drug effects*
;
Mice
;
Cell Differentiation/drug effects*
;
Adipocytes, Beige/drug effects*
;
3T3-L1 Cells
;
Adipocytes, Brown/drug effects*
;
Triterpenes/pharmacology*
;
Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha
;
Uncoupling Protein 1
;
Sterol Regulatory Element Binding Protein 1/metabolism*
2.Natural diosmin alleviating obesity and nonalcoholic fatty liver disease by regulating the activating the AMP-activated protein kinase (AMPK) pathway.
Can LIU ; Siyu HAO ; Mengdi ZHANG ; Xueyu WANG ; Baiwang CHU ; Tingjie WEN ; Ruoyu DANG ; Hua SUN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(7):863-870
Obesity and metabolic dysfunction-associated steatotic liver disease (MASLD) are linked to numerous chronic conditions, including cardiovascular disease, atherosclerosis, chronic kidney disease, and type II diabetes. Previous research identified the natural flavonoid diosmin, derived from Chrysanthemum morifolium, as a regulator of glucose metabolism. However, its effects on lipid metabolism and underlying mechanisms remained unexplored. The AMP-activated protein kinase (AMPK) pathway serves a critical function in glucose and lipid metabolism. The relationship between diosmin and the AMPK pathway has not been previously documented. This investigation examined diosmin's capacity to reduce lipid content through AMPK pathway activation in hepatoblastoma cell line G2 (HepG2) and 3T3-L1 cells. The study revealed that diosmin inhibits lipogenesis, indicating its potential as an anti-obesity agent in obese mice. Moreover, diosmin demonstrated effective MASLD alleviation in vivo. These findings suggest that diosmin may represent a promising therapeutic candidate for treating obesity and MASLD.
Diosmin/administration & dosage*
;
Animals
;
AMP-Activated Protein Kinases/genetics*
;
Humans
;
Non-alcoholic Fatty Liver Disease/enzymology*
;
Mice
;
Obesity/enzymology*
;
Hep G2 Cells
;
Male
;
3T3-L1 Cells
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Lipid Metabolism/drug effects*
;
Chrysanthemum/chemistry*
;
Lipogenesis/drug effects*
3.Design and synthesis of novel saponin-triazole derivatives in the regulation of adipogenesis.
Yongsheng FANG ; Zhiyun ZHU ; Chun XIE ; Dazhen XIA ; Huimin ZHAO ; Zihui WANG ; Qian LU ; Caimei ZHANG ; Wenyong XIONG ; Xiaodong YANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):920-931
Saponins associated with Panax notoginseng (P. notoginseng) demonstrate significant therapeutic efficacy across multiple diseases. However, certain high-yield saponins face limited clinical applications due to their reduced pharmacological efficacy. This study synthesized and evaluated 36 saponin-1,2,3-triazole derivatives of ginsenosides Rg1/Rb1 and notoginsenoside R1 for anti-adipogenesis activity in vitro. The research revealed that the ginsenosides Rg1-1,2,3-triazole derivative a17 demonstrates superior adipogenesis inhibitory effects. Structure-activity relationships (SARs) analysis indicates that incorporating an amidyl-substituted 1,2,3-triazole into the saponin side chain via Click reaction enhances anti-adipogenesis activity. Additionally, several other derivatives exhibit general adipogenesis inhibition. Compound a17 demonstrated enhanced potency compared to the parent ginsenoside Rg1. Mechanistic investigations revealed that a17 exhibits dose-dependent inhibition of adipogenesis in vitro, accompanied by decreased expression of preadipocytes. Peroxisome proliferator-activated receptor γ (PPARγ), fatty acid synthase (FAS), and fatty acid binding protein 4 (FABP4) adipogenesis regulators. These findings establish the ginsenoside Rg1-1,2,3-triazole derivative a17 as a promising adipocyte differentiation inhibitor and potential therapeutic agent for obesity and associated metabolic disorders. This research provides a foundation for developing effective therapeutic approaches for various metabolic syndromes.
Adipogenesis/drug effects*
;
Triazoles/chemical synthesis*
;
Ginsenosides/chemical synthesis*
;
Saponins/chemical synthesis*
;
Animals
;
Mice
;
Structure-Activity Relationship
;
PPAR gamma/genetics*
;
3T3-L1 Cells
;
Adipocytes/metabolism*
;
Panax notoginseng/chemistry*
;
Drug Design
;
Molecular Structure
;
Humans
;
Cell Differentiation/drug effects*
;
Fatty Acid-Binding Proteins/genetics*
4.Astragalus polysaccharides improve adipose tissue aging in naturally aged mice via indole-3-lactic acid.
Yi-Yang BAO ; Ming-Xiao LI ; Xin-Xin GAO ; Wen-Jing WEI ; Wen-Jin HUANG ; Li-Zhong LIN ; Hao WANG ; Ning-Ning ZHENG ; Hou-Kai LI
China Journal of Chinese Materia Medica 2024;49(22):5998-6007
Plant polysaccharides are effective components that widely present in traditional Chinese medicine(TCM), exhibiting rich biological activities. However, as most plant polysaccharides cannot be directly absorbed and utilized by the human digestive system, it is now believed that their mode of action mainly involves interaction with intestinal microbiota, leading to the production of functional small molecules. The efficacy of Astragalus polysaccharide(APS) is extensive, including weight loss, improvement of fatty liver, reduction of blood lipids, and enhancement of insulin sensitivity, which may also be related to the regulation of intestinal microbiota. Adipose tissue senescence is an important characteristic of the physiological aging process in the body, often occurring prior to the aging of other important organs. Its main features include the accumulation of senescent cells and exacerbation of inflammation within the tissue. Therefore, to explore the potential protective effects of APS on aging, the improvement of adipose tissue aging phenotype in naturally aging mice was observed using APS, and combined with metagenomic metabolomics, corresponding microbial metabolic functional molecules were identified. Furthermore, functional tests in cell aging models were conducted. The results showed that APS significantly improved the adipocyte aging characteristics of naturally aging mice: specifically reducing aging-induced adipocyte hypertrophy; decreasing the protein expression of aging markers cyclin-dependent kinase inhibitor p21(P21) and multiple tumor suppressor 1(P16); lowering the tissue inflammation reaction. Metagenomic metabolomic analysis of serum from mice in each group revealed that APS significantly increased the content of indole-3-lactic acid(ILA) in naturally aging mice. Further in vitro studies showed that ILA could improve the aging of 3T3-L1 mouse embryonic fibroblasts induced by bleomycin, reduce the protein expression of the aging marker P21, alleviate inflammation, and enhance the ability of preadipocytes to mature. Therefore, APS had the efficacy of protecting naturally aging mice, and its action may be related to the increase in the intestinal microbiota metabolite ILA. This study suggested that TCM may serve as an important entry point for explaining the mechanism of action of TCM by regulating intestinal microbiota and their functional metabolites.
Animals
;
Mice
;
Aging/drug effects*
;
Adipose Tissue/metabolism*
;
Polysaccharides/pharmacology*
;
Indoles/pharmacology*
;
Male
;
Astragalus Plant/chemistry*
;
3T3-L1 Cells
;
Humans
;
Adipocytes/cytology*
;
Mice, Inbred C57BL
;
Cellular Senescence/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Gastrointestinal Microbiome/drug effects*
5.A convenient and time-saving method for primary culture of mature white adipocytes from mice.
Zhi Bo SHENTU ; Xin GONG ; Hui Di YANG
Journal of Southern Medical University 2023;43(2):213-218
OBJECTIVE:
To establish a simple, low-cost and time-saving method for primary culture of mature white adipocytes from mice.
METHODS:
Mature white adipocytes were isolated from the epididymis and perirenal area of mice for primary culture using a modified mature adipocyte culture method or the ceiling culture method. The morphology of the cultured mature adipocytes was observed using Oil Red O staining, and the cell viability was assessed with CCK8 method. The expression of PPARγ protein in the cells was detected with Western blotting, and the mRNA expressions of CD36, FAS, CPT1A and FABP4 were detected using RT-qPCR.
RESULTS:
Oil Red O staining showed a good and uniform morphology of the adipocytes in primary culture using the modified culture method, while the cells cultured using the ceiling culture method exhibited obvious morphological changes. CCK8 assay showed no significant difference in cell viability between freshly isolated mature white adipocytes and the cells obtained with the modified culture method. Western blotting showed that the freshly isolated adipocytes and the cells cultured for 72 h did not differ significantly in the expression levels of PPARγ protein (P=0.759), which was significantly lowered in response to treatment with GW9662 (P < 0.001). GW9662 treatment of the cells upregulated mRNA expressions of CD36 (P < 0.001) and CPT1A (P=0.003) and down-regulated those of FAS (P=0.001) and FABP4 (P < 0.001).
CONCLUSION
We established a convenient and time-saving method for primary culture mature white adipocytes from mice to facilitate further functional studies of mature adipocytes.
Male
;
Mice
;
Animals
;
Adipocytes, White/metabolism*
;
PPAR gamma/metabolism*
;
RNA, Messenger
;
Cell Differentiation
;
3T3-L1 Cells
6.Overexpression of ATF3 inhibits the differentiation of goat intramuscular preadipocytes.
Chongyang WANG ; Cheng LUO ; Hao ZHANG ; Xin LI ; Yanyan LI ; Yan XIONG ; Youli WANG ; Yaqiu LIN
Chinese Journal of Biotechnology 2022;38(8):2939-2947
The aim of this study was to investigate the effect of activating transcription factor 3 (ATF3) on the differentiation of intramuscular preadipocytes in goat, and to elucidate its possible action pathway at the molecular level. In this study, the recombinant plasmid of goat pEGFP-N1-ATF3 was constructed, and the intramuscular preadipocytes were transfected with liposomes. The relative expression levels of adipocyte differentiation marker genes were detected by quantitative real-time PCR (qRT-PCR). After transfection of goat intramuscular preadipocytes with the goat pEGFP-N1-ATF3 overexpression vector, it was found that the accumulation of lipid droplets was inhibited, and the adipocyte differentiation markers PPARγ, C/EBPα and SREBP1 were extremely significantly down-regulated (P < 0.01), while C/EBPβ and AP2 were significantly down-regulated (P < 0.05). The ATF3 binding sites were predicted to exist in the promoter regions of PPARγ, C/EBPα and AP2 by the ALGGEN PROMO program. The overexpression of goat ATF3 inhibits the accumulation of lipid droplets in intramuscular preadipocytes, and this effect may be achieved by down-regulating PPARγ, C/EBPα and AP2. These results may facilitate elucidation of the regulatory mechanism of ATF3 in regulating the differentiation of goat intramuscular preadipocytes.
3T3-L1 Cells
;
Activating Transcription Factor 3/pharmacology*
;
Adipocytes
;
Adipogenesis/genetics*
;
Animals
;
CCAAT-Enhancer-Binding Protein-alpha/pharmacology*
;
Cell Differentiation
;
Goats
;
Mice
;
PPAR gamma/metabolism*
7.CRISPR/Cas9 knockout plin1 enhances lipolysis in 3T3-L1 adipocytes.
Chenyi FENG ; Xiang XU ; Weipeng DONG ; Zhaoyang CHEN ; Jiong YAN
Chinese Journal of Biotechnology 2020;36(7):1386-1394
We used CRISPR/Cas9 to delete plin1 of 3T3-L1 preadipocyte, to observe its effect on lipolysis in adipocytes and to explore regulatory pathways. We cultured 3T3-L1 preadipocytes, and the plin1 knockout vectors were transfected by electroporation. Puromycin culture was used to screen successfully transfected adipocytes, and survival rates were observed after transfection. The optimized "cocktail" method was used to differentiate 3T3-L1 preadipocytes. The glycerol and triglyceride contents were determined by enzymatic methods. The changes in lipid droplet form and size were observed by Oil red O staining. The protein expression of PLIN1, PPARγ, Fsp27, and lipases was measured by Western blotting. RT-PCR was used to measure the expression of PLIN1 and lipases mRNA. After the adipocytes in the control group were induced to differentiate, the quantity of tiny lipid droplets was decreased, and the quantity of unilocular lipid droplets was increased and arranged in a circle around the nucleus. Compared with the control group, the volume of unilocular lipid droplets decreased, and the quantity of tiny lipid droplets increased after induction of adipocytes in the knockout group. The expression of PLIN1 mRNA and protein in the adipocytes was significantly inhibited (P<0.05); glycerol levels increased significantly (0.098 4±0.007 6), TG levels decreased significantly (0.031 0±0.005 3); mRNA and protein expression of HSL and ATGL increased (P<0.05); PPARγ and Fsp27 expression unchanged in adipocytes. The above results indicate that the knockout of plin1 enhances the lipolysis of 3T3-L1 adipocytes by exposing lipids in lipid droplets and up-regulating lipases effects.
3T3-L1 Cells
;
Adipocytes
;
metabolism
;
Animals
;
CRISPR-Cas Systems
;
Gene Knockout Techniques
;
Lipase
;
metabolism
;
Lipolysis
;
genetics
;
Mice
;
Perilipin-1
;
genetics
;
metabolism
8.Effects of Lonicera caerulea extract on adipocyte differentiation and adipogenesis in 3T3-L1 cells and mouse adipose-derived stem cells (MADSCs)
Miey PARK ; Changho LEE ; Hae Jeung LEE
Journal of Nutrition and Health 2019;52(1):17-25
PURPOSE: Obesity is a major health problem of global significance because it is clearly associated with an increased risk of health problems, such as nonalcoholic fatty liver disease (NAFLD), diabetes, cardiovascular diseases, and cancer. Lonicera caerulea (LC) originates from high mountains or wet areas and has been used as a traditional medicine in northern Russia, China, and Japan. LC contains a range of bioactive constituents, such as vitamins, minerals, and polyphenols. This study examined the anti-obesity effects of LC during differentiation in preadipocytes. METHODS: The cell viability assay was performed after the differentiation of 3T3-L1 cells for 7 days. Oil Red O staining was used to visualize the changes in lipid droplets in 3T3-L1 cells and mouse adipose-derived stem cells (MADSCs). The mRNA expression of obesity-related genes was determined by quantitative real-time PCR. RESULTS: According to the results of Oil Red O staining, the lipid levels and size of lipid droplets in the adipocytes were reduced and the LC extract (LCE, 0.25–1 mg/mL) markedly inhibited adipogenesis in a dose-dependent manner. The treatment of LCE also decreased the mRNA expression of peroxisome proliferator-activated receptor γ (PPARγ), CCAAT/enhancer binding protein-α (C/EBPα), and sterol regulatory element binding protein 1 (SREBP1) in 3T3-L1 cells. Western blot analysis showed that the PPARγ, C/EBPα, and SREBP1 protein levels in both 3T3-L1 and MADSC were reduced in a dose-dependent manner. CONCLUSION: These results suggest that LCE can inhibit adipogenic differentiation through the regulation of adipogenesis-related markers.
3T3-L1 Cells
;
Adipocytes
;
Adipogenesis
;
Animals
;
Blotting, Western
;
Cardiovascular Diseases
;
Cell Survival
;
China
;
Japan
;
Lipid Droplets
;
Lonicera
;
Medicine, Traditional
;
Mice
;
Minerals
;
Miners
;
Non-alcoholic Fatty Liver Disease
;
Obesity
;
Peroxisomes
;
Polyphenols
;
Real-Time Polymerase Chain Reaction
;
RNA, Messenger
;
Russia
;
Stem Cells
;
Sterol Regulatory Element Binding Protein 1
;
Vitamins
9.Cryptotanshinone Inhibits Lipid Accumulation in Differentiating 3T3-L1 Preadipocytes by Down-regulating C/EBP-α, PPAR-γ, FAS, Perilipin A, and STAT-3
Yu Kyoung PARK ; Byeong Churl JANG
Keimyung Medical Journal 2019;38(1):1-10
Differentiation of preadipocyte, also named adipogenesis, leads to the phenotype of mature adipocyte that is filled with many lipid droplets. Excessive lipid accumulation in adipocytes leads to the development of obesity. In this study, we investigated the effect of 11 different natural compounds on lipid accumulation during the differentiation of 3T3-L1 preadipocytes into 3T3-L1 adipocytes. Strikingly, among the natural compounds, cryptotanshinone at 10 µM most strongly reduced triglyceride (TG) contents in 3T3-L1 cells after 8 days of the differentiation. Furthermore, cryptotanshinone at 10 µM significantly suppressed lipid accumulation in 3T3-L1 cells after 8 days of the differentiation. Cryptotanshinone at 1 to 10 µM tested did not affect the survival of 3T3-L1 cells after 8 days of the differentiation. On mechanistic levels, cryptotanshinone time-differentially decreased the expression levels of CCAAT/enhancer-binding protein-α (C/EBP-α), peroxisome proliferator-activated receptor-γ (PPAR-γ), fatty acid synthase (FAS), and perilipin A but also the phosphorylation levels of signal transducer and activator of transcription-3 (STAT-3) during the 3T3-L1 cell differentiation. Taken together, these findings demonstrate that cryptotanshinone inhibits lipid accumulation in differentiating 3T3-L1 cells, which appears to be mediated through the reduced expression and/or phosphorylation levels of C/EBP-α, PPAR-γ, FAS, Perilipin A, and STAT-3.
3T3-L1 Cells
;
Adipocytes
;
Adipogenesis
;
Lipid Droplets
;
Obesity
;
Peroxisomes
;
Phenotype
;
Phosphorylation
;
Transducers
;
Triglycerides
10.The Activation of PPAR-α and Wnt/β-catenin by Luffa cylindrica Supercritical Carbon Dioxide Extract
Natural Product Sciences 2019;25(4):341-347
Luffa cylindrica (LC) is a very fast-growing climber and its fruit have been considered as agricultural wastes. We conducted to check the comparative qualities of ethanol solvent extraction (LCE) and supercritical carbon dioxide extraction (LCS) of L. cylindrica fruit and seed. LCS had higher antioxidant and polyphenol contents than LCE. LCS were significantly increased peroxisome proliferator-activated receptor (PPAR)-a and involucrin expression as epidermal differentiation marker in 3D skin equivalent model. LCS also showed antimicrobial activity against Staphylococcus aureus, a causative bacteria in atopic dermatitis. In addition, LCS inhibited the adipocyte differentiation of 3T3-L1 cells. When treated with the extract at a concentration of 100 µg/mL, the Wnt/β-catenin pathway reporter luciferase activity of HEK 293-TOP cells was increased approximately by 2-folds compared to that of the untreated control group. These results indicate that L. cylindrica supercritical carbon dioxide extract may serve as a cosmeceutical for improving skin barrier function and the treatment of obesity.
3T3-L1 Cells
;
Adipocytes
;
Bacteria
;
Carbon Dioxide
;
Carbon
;
Dermatitis, Atopic
;
Ethanol
;
Fruit
;
Luciferases
;
Luffa
;
Obesity
;
Peroxisomes
;
Skin
;
Staphylococcus aureus

Result Analysis
Print
Save
E-mail