1.A convenient and time-saving method for primary culture of mature white adipocytes from mice.
Zhi Bo SHENTU ; Xin GONG ; Hui Di YANG
Journal of Southern Medical University 2023;43(2):213-218
OBJECTIVE:
To establish a simple, low-cost and time-saving method for primary culture of mature white adipocytes from mice.
METHODS:
Mature white adipocytes were isolated from the epididymis and perirenal area of mice for primary culture using a modified mature adipocyte culture method or the ceiling culture method. The morphology of the cultured mature adipocytes was observed using Oil Red O staining, and the cell viability was assessed with CCK8 method. The expression of PPARγ protein in the cells was detected with Western blotting, and the mRNA expressions of CD36, FAS, CPT1A and FABP4 were detected using RT-qPCR.
RESULTS:
Oil Red O staining showed a good and uniform morphology of the adipocytes in primary culture using the modified culture method, while the cells cultured using the ceiling culture method exhibited obvious morphological changes. CCK8 assay showed no significant difference in cell viability between freshly isolated mature white adipocytes and the cells obtained with the modified culture method. Western blotting showed that the freshly isolated adipocytes and the cells cultured for 72 h did not differ significantly in the expression levels of PPARγ protein (P=0.759), which was significantly lowered in response to treatment with GW9662 (P < 0.001). GW9662 treatment of the cells upregulated mRNA expressions of CD36 (P < 0.001) and CPT1A (P=0.003) and down-regulated those of FAS (P=0.001) and FABP4 (P < 0.001).
CONCLUSION
We established a convenient and time-saving method for primary culture mature white adipocytes from mice to facilitate further functional studies of mature adipocytes.
Male
;
Mice
;
Animals
;
Adipocytes, White/metabolism*
;
PPAR gamma/metabolism*
;
RNA, Messenger
;
Cell Differentiation
;
3T3-L1 Cells
2.Overexpression of ATF3 inhibits the differentiation of goat intramuscular preadipocytes.
Chongyang WANG ; Cheng LUO ; Hao ZHANG ; Xin LI ; Yanyan LI ; Yan XIONG ; Youli WANG ; Yaqiu LIN
Chinese Journal of Biotechnology 2022;38(8):2939-2947
The aim of this study was to investigate the effect of activating transcription factor 3 (ATF3) on the differentiation of intramuscular preadipocytes in goat, and to elucidate its possible action pathway at the molecular level. In this study, the recombinant plasmid of goat pEGFP-N1-ATF3 was constructed, and the intramuscular preadipocytes were transfected with liposomes. The relative expression levels of adipocyte differentiation marker genes were detected by quantitative real-time PCR (qRT-PCR). After transfection of goat intramuscular preadipocytes with the goat pEGFP-N1-ATF3 overexpression vector, it was found that the accumulation of lipid droplets was inhibited, and the adipocyte differentiation markers PPARγ, C/EBPα and SREBP1 were extremely significantly down-regulated (P < 0.01), while C/EBPβ and AP2 were significantly down-regulated (P < 0.05). The ATF3 binding sites were predicted to exist in the promoter regions of PPARγ, C/EBPα and AP2 by the ALGGEN PROMO program. The overexpression of goat ATF3 inhibits the accumulation of lipid droplets in intramuscular preadipocytes, and this effect may be achieved by down-regulating PPARγ, C/EBPα and AP2. These results may facilitate elucidation of the regulatory mechanism of ATF3 in regulating the differentiation of goat intramuscular preadipocytes.
3T3-L1 Cells
;
Activating Transcription Factor 3/pharmacology*
;
Adipocytes
;
Adipogenesis/genetics*
;
Animals
;
CCAAT-Enhancer-Binding Protein-alpha/pharmacology*
;
Cell Differentiation
;
Goats
;
Mice
;
PPAR gamma/metabolism*
3.Palmitoylation of GNAQ/11 is critical for tumor cell proliferation and survival in GNAQ/11-mutant uveal melanoma.
Yan ZHANG ; Baoyuan ZHANG ; Yongyun LI ; Yuting DAI ; Jiaoyang LI ; Donghe LI ; Zhizhou XIA ; Jianming ZHANG ; Ping LIU ; Ming CHEN ; Bo JIAO ; Ruibao REN
Frontiers of Medicine 2022;16(5):784-798
More than 85% of patients with uveal melanoma (UM) carry a GNAQ or GNA11 mutation at a hotspot codon (Q209) that encodes G protein α subunit q/11 polypeptides (Gαq/11). GNAQ/11 relies on palmitoylation for membrane association and signal transduction. Despite the palmitoylation of GNAQ/11 was discovered long before, its implication in UM remains unclear. Here, results of palmitoylation-targeted mutagenesis and chemical interference approaches revealed that the loss of GNAQ/11 palmitoylation substantially affected tumor cell proliferation and survival in UM cells. Palmitoylation inhibition through the mutation of palmitoylation sites suppressed GNAQ/11Q209L-induced malignant transformation in NIH3T3 cells. Importantly, the palmitoylation-deficient oncogenic GNAQ/11 failed to rescue the cell death initiated by the knock down of endogenous GNAQ/11 oncogenes in UM cells, which are much more dependent on Gαq/11 signaling for cell survival and proliferation than other melanoma cells without GNAQ/11 mutations. Furthermore, the palmitoylation inhibitor, 2-bromopalmitate, also specifically disrupted Gαq/11 downstream signaling by interfering with the MAPK pathway and BCL2 survival pathway in GNAQ/11-mutant UM cells and showed a notable synergistic effect when applied in combination with the BCL2 inhibitor, ABT-199, in vitro. The findings validate that GNAQ/11 palmitoylation plays a critical role in UM and may serve as a promising therapeutic target for GNAQ/11-driven UM.
Humans
;
Mice
;
Animals
;
Lipoylation
;
NIH 3T3 Cells
;
Uveal Neoplasms/genetics*
;
Melanoma/genetics*
;
Cell Proliferation
;
Proto-Oncogene Proteins c-bcl-2
;
GTP-Binding Protein alpha Subunits, Gq-G11/genetics*
4.Cytocompatibility and cell proliferation evaluation of calcium phosphate-based root canal sealers
Letícia Boldrin MESTIERI ; Ivana Maria ZACCARA ; Lucas Siqueira PINHEIRO ; Fernando Branco BARLETTA ; Patrícia Maria Polli KOPPER ; Fabiana Soares GRECCA
Restorative Dentistry & Endodontics 2020;45(1):2-
OBJECTIVES: This study aimed to evaluate the cell viability and migration of Endosequence Bioceramic Root Canal Sealer (BC Sealer) compared to MTA Fillapex and AH Plus.MATERIALS AND METHODS: BC Sealer, MTA Fillapex, and AH Plus were placed in contact with culture medium to obtain sealers extracts in dilution 1:1, 1:2 and 1:4. 3T3 cells were plated and exposed to the extracts. Cell viability and migration were assessed by 3-(4,5-dimethyl-thiazoyl)-2,5-diphenyl-tetrazolium bromide (MTT) and Scratch assay, respectively. Data were analyzed by Kruskal-Wallis and Dunn's test (p < 0.05).RESULTS: The MTT assay revealed greater cytotoxicity for AH Plus and MTA Fillapex at 1:1 dilution when compared to control (p < 0.05). At 1:2 and 1:4 dilutions, all sealers were similar to control (p > 0.05) and MTA Fillapex was more cytotoxic than BC Sealer (p < 0.05). Scratch assay demonstrated the continuous closure of the wound according to time. At 30 hours, the control group presented closure of the wound (p < 0.05). At 36 hours, only BC Sealer presented the closure when compared to AH Plus and MTA Fillapex (p < 0.05). At 42 hours, AH Plus and MTA Fillapex showed a wound healing (p > 0.05).CONCLUSIONS: All tested sealers demonstrated cell viability highlighting BC Sealer, which showed increased cell migration capacity suggesting that this sealer may achieve better tissue repair when compared to other tested sealers.
3T3 Cells
;
Animals
;
Calcium
;
Cell Movement
;
Cell Proliferation
;
Cell Survival
;
Dental Pulp Cavity
;
Endodontics
;
Fibroblasts
;
Mice
;
Pemetrexed
;
Wound Healing
;
Wounds and Injuries
5.CRISPR/Cas9 knockout plin1 enhances lipolysis in 3T3-L1 adipocytes.
Chenyi FENG ; Xiang XU ; Weipeng DONG ; Zhaoyang CHEN ; Jiong YAN
Chinese Journal of Biotechnology 2020;36(7):1386-1394
We used CRISPR/Cas9 to delete plin1 of 3T3-L1 preadipocyte, to observe its effect on lipolysis in adipocytes and to explore regulatory pathways. We cultured 3T3-L1 preadipocytes, and the plin1 knockout vectors were transfected by electroporation. Puromycin culture was used to screen successfully transfected adipocytes, and survival rates were observed after transfection. The optimized "cocktail" method was used to differentiate 3T3-L1 preadipocytes. The glycerol and triglyceride contents were determined by enzymatic methods. The changes in lipid droplet form and size were observed by Oil red O staining. The protein expression of PLIN1, PPARγ, Fsp27, and lipases was measured by Western blotting. RT-PCR was used to measure the expression of PLIN1 and lipases mRNA. After the adipocytes in the control group were induced to differentiate, the quantity of tiny lipid droplets was decreased, and the quantity of unilocular lipid droplets was increased and arranged in a circle around the nucleus. Compared with the control group, the volume of unilocular lipid droplets decreased, and the quantity of tiny lipid droplets increased after induction of adipocytes in the knockout group. The expression of PLIN1 mRNA and protein in the adipocytes was significantly inhibited (P<0.05); glycerol levels increased significantly (0.098 4±0.007 6), TG levels decreased significantly (0.031 0±0.005 3); mRNA and protein expression of HSL and ATGL increased (P<0.05); PPARγ and Fsp27 expression unchanged in adipocytes. The above results indicate that the knockout of plin1 enhances the lipolysis of 3T3-L1 adipocytes by exposing lipids in lipid droplets and up-regulating lipases effects.
3T3-L1 Cells
;
Adipocytes
;
metabolism
;
Animals
;
CRISPR-Cas Systems
;
Gene Knockout Techniques
;
Lipase
;
metabolism
;
Lipolysis
;
genetics
;
Mice
;
Perilipin-1
;
genetics
;
metabolism
6.The molecular mechanism of fibroblast growth factor 21-inhibited leptin expression in adipocytes.
Di CHEN ; Yan-Yan ZHAO ; Xiang-Yan LIANG ; Li-Jun ZHANG ; Lan-Lan WEI ; Rong XIE ; Xiao-Chun ZHANG ; Xing-Li SU ; Yu-Feng ZHAO
Acta Physiologica Sinica 2020;72(2):175-180
The present study was aimed to clarify the signaling molecular mechanism by which fibroblast growth factor 21 (FGF21) regulates leptin gene expression in adipocytes. Differentiated 3T3-F442A adipocytes were used as study object. The mRNA expression level of leptin was detected by fluorescence quantitative RT-PCR. The phosphorylation levels of proteins of signal transduction pathways were detected by Western blot. The results showed that FGF21 significantly down-regulated the mRNA expression level of leptin in adipocytes, and FGF21 receptor inhibitor BGJ-398 could completely block this effect. FGF21 up-regulated the phosphorylation levels of ERK1/2 and AMPK in adipocytes. Either ERK1/2 inhibitor SCH772984 or AMPK inhibitor Compound C could partially block the inhibitory effect of FGF21, and the combined application of these two inhibitors completely blocked the effect of FGF21. Neither PI3K inhibitor LY294002 nor Akt inhibitor AZD5363 affected the inhibitory effect of FGF21 on leptin gene expression. These results suggest that FGF21 may inhibit leptin gene expression by activating ERK1/2 and AMPK signaling pathways in adipocytes.
3T3 Cells
;
Adenylate Kinase
;
Adipocytes
;
metabolism
;
Animals
;
Down-Regulation
;
Fibroblast Growth Factors
;
metabolism
;
Leptin
;
metabolism
;
MAP Kinase Signaling System
;
Mice
;
Phosphorylation
;
Signal Transduction
7.Biological efficacy of perpendicular type-I collagen protruded from TiO
Chia-Yu CHEN ; David M KIM ; Cliff LEE ; John DA SILVA ; Shigemi NAGAI ; Toshiki NOJIRI ; Masazumi NAGAI
International Journal of Oral Science 2020;12(1):36-36
The aim of this study was to evaluate the biological efficacy of a unique perpendicular protrusion of type-I collagen (Col-I) from TiO
Animals
;
Cell Adhesion
;
Collagen Type I
;
Mice
;
NIH 3T3 Cells
;
Nanotubes
;
Surface Properties
;
Titanium
8.Supplementation of Fermented Barley Extracts with Lactobacillus Plantarum dy-1 Inhibits Obesity via a UCP1-dependent Mechanism.
Xiang XIAO ; Juan BAI ; Ming Song LI ; Jia Yan ZHANG ; Xin Juan SUN ; Ying DONG
Biomedical and Environmental Sciences 2019;32(8):578-591
OBJECTIVE:
We aimed to explore how fermented barley extracts with Lactobacillus plantarum dy-1 (LFBE) affected the browning in adipocytes and obese rats.
METHODS:
In vitro, 3T3-L1 cells were induced by LFBE, raw barley extraction (RBE) and polyphenol compounds (PC) from LFBE to evaluate the adipocyte differentiation. In vivo, obese SD rats induced by high fat diet (HFD) were randomly divided into three groups treated with oral gavage: (a) normal control diet with distilled water, (b) HFD with distilled water, (c) HFD with 800 mg LFBE/kg body weight (bw).
RESULTS:
In vitro, LFBE and the PC in the extraction significantly inhibited adipogenesis and potentiated browning of 3T3-L1 preadipocytes, rather than RBE. In vivo, we observed remarkable decreases in the body weight, serum lipid levels, white adipose tissue (WAT) weights and cell sizes of brown adipose tissues (BAT) in the LFBE group after 10 weeks. LFBE group could gain more mass of interscapular BAT (IBAT) and promote the dehydrogenase activity in the mitochondria. And LFBE may potentiate process of the IBAT thermogenesis and epididymis adipose tissue (EAT) browning via activating the uncoupling protein 1 (UCP1)-dependent mechanism to suppress the obesity.
CONCLUSION
These results demonstrated that LFBE decreased obesity partly by increasing the BAT mass and the energy expenditure by activating BAT thermogenesis and WAT browning in a UCP1-dependent mechanism.
3T3 Cells
;
Adipocytes
;
drug effects
;
physiology
;
Adipose Tissue, Brown
;
drug effects
;
physiology
;
Adipose Tissue, White
;
drug effects
;
physiology
;
Animal Feed
;
analysis
;
Animals
;
Anti-Obesity Agents
;
administration & dosage
;
metabolism
;
Cell Differentiation
;
drug effects
;
Diet
;
Fermentation
;
Hordeum
;
chemistry
;
Lactobacillus plantarum
;
chemistry
;
Male
;
Mice
;
Obesity
;
drug therapy
;
genetics
;
Plant Extracts
;
chemistry
;
Probiotics
;
administration & dosage
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Uncoupling Protein 1
;
genetics
;
metabolism
9.Interaction between necroptosis and apoptosis in MC3T3-E1 cell death induced by dexamethasone.
Min FENG ; Ruirui ZHANG ; Pei YANG ; Kunzheng WANG ; Hui QIANG
Journal of Southern Medical University 2019;39(9):1030-1037
OBJECTIVE:
To investigate the relationship between necroptosis and apoptosis in MCET3-E1 cell death induced by glucocorticoids.
METHODS:
MC3T3-E1 cells were incubated with 10-6 mol/L dexamethasone followed by treatment with the apoptosis inhibitor z-VAD-fmk (40 μmol/L) or the necroptosis inhibitor necrostatin-1 (40 μmol/L) for 2 h. At 72 h after incubation with dexamethasone, the cells were harvested to determine the cell viability using WST-1 assay and the rate of necrotic cells using annexin V/PI double staining; the percentage of apoptotic cells was determined using Hoechst staining. The mitochondrial membrane potential and the level of ATP in the cells were also evaluated. Transmission electron microscopy was used to observe the microstructural changes of the cells. The expressions of RIP-1 and RIP-3 in the cells were detected by Western blotting.
RESULTS:
At a concentration of 10-6 mol/L, dexamethasone induced both apoptosis and necroptosis in MC3T3- E1 cells. Annexin V/PI double staining showed that inhibition of cell apoptosis caused an increase in cell necrosis manifested by such changes as mitochondrial swelling and plasma membrane disruption, as shown by electron microscopy; Hoechst staining showed that the percentage of apoptotic cells was significantly reduced. When necroptosis was inhibited by necrostatin-1, MC3T3-E1 cells showed significantly increased apoptosis as shown by both AV/PI and Hoechst staining, and such changes were accompanied by changes in mitochondrial membrane potential and ATP level in the cells.
CONCLUSIONS
In the process of dexamethasone-induced cell death, necroptosis and apoptosis can transform reciprocally accompanied by functional changes of the mitochondria.
3T3 Cells
;
Adenosine Triphosphate
;
Animals
;
Apoptosis
;
Cell Death
;
drug effects
;
Dexamethasone
;
Membrane Potential, Mitochondrial
;
Mice
;
Microscopy, Electron
;
Mitochondria
;
ultrastructure
;
Necrosis
10.Research of simulated microgravity regulate MC3T3-E1 cells differentiation through the nuclear factor-kappa B signaling pathway.
Biao HAN ; Yang ZHANG ; Hao LI ; Shuping WEI ; Ruixin LI ; Xizheng ZHANG
Journal of Biomedical Engineering 2019;36(3):421-427
In this study, we aim to investigat the effect of microgravity on osteoblast differentiation in osteoblast-like cells (MC3T3-E1). In addition, we explored the response mechanism of nuclear factor-kappa B (NF-κB) signaling pathway to "zero- " in MC3T3-E1 cells under the simulated microgravity conditions. MC3T3-E1 were cultured in conventional (CON) and simulated microgravity (SMG), respectively. Then, the expression of the related osteoblastic genes and the specific molecules in NF-κB signaling pathway were measured. The results showed that the mRNA and protein levels of alkaline phosphatase (ALP), osteocalcin (OCN) and type Ⅰ collagen (CoL-Ⅰ) were dramatically decreased under the simulated microgravity. Meanwhile, the NF-κB inhibitor α (IκB-α) protein level was decreased and the expressions of phosphorylation of IκB-α (p-IκB-α), p65 and phosphorylation of p65 (p-p65) were significantly up-regulated in SMG group. In addition, the IL-6 content in SMG group was increased compared to CON. These results indicated that simulated microgravity could activate the NF-κB pathway to regulate MC3T3-E1 cells differentiation.
3T3 Cells
;
Animals
;
Cell Differentiation
;
Mice
;
NF-kappa B
;
physiology
;
Osteoblasts
;
Signal Transduction
;
Weightlessness Simulation

Result Analysis
Print
Save
E-mail