1.Modified Ditan Tang Regulates Biorhythm-related Genes in Rat Model of Non-alcoholic Fatty Liver Disease
Zhiwen PANG ; Yu LIU ; Nan SONG ; Jie WANG ; Jingxuan ZHU ; Zhen HUA ; Yupeng PEI ; Qun WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):115-124
ObjectiveTo investigate the effects of modified Ditan tang on genes related to the transcription-translation feedback loop (TTFL) of biorhythm in the rat model of non-alcoholic fatty liver disease (NAFLD) and its mechanism for prevention and treatment of NAFLD. MethodsSixty-five healthy SPF male SD rats were randomly assigned into blank (n=20), model (n=15), and low-, medium-, and high-dose (2.68, 5.36, and 10.72 g·kg-1·d-1, respectively) modified Ditan tang (n=10) groups. Other groups except the blank group were fed a high-fat diet for 12 weeks. The modified Ditan tang groups were treated with the decoction at corresponding doses by gavage, and the blank and model groups were treated with an equal volume of normal saline from the 9th week for 4 weeks. The levels of triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in the serum were measured by an automatic biochemical analyzer. TG and non-esterified fatty acid (NEFA) assay kits were used to measure the levels of TG and NEFA in the liver. The pathological changes in the hypothalamus and liver were observed by hematoxylin-eosin staining, and the lipid deposition in the liver was observed by oil red O staining. The levels of brain-muscle ARNT-like protein 1 (BMAL1/ARNTL) in the hypothalamus and liver were determined by immunohistochemical staining. The mRNA and protein levels of BMAL1, circadian locomotor output cycles kaput (CLOCK), period circadian clock 2 (PER2), and cryptochrome1 (Cry1) in the hypothalamus and liver were determined by Real-time PCR and Western blot, respectively. ResultsCompared with the blank group, the model group showed elevated levels of TG, TC, LDL-C, AST, and ALT (P<0.01) and a lowered level of HDL-C (P<0.05) in the serum, elevated levels of TG and NEFA in the liver (P<0.01), pyknosis and deep staining of hypothalamic neuron cells, and a large number of vacuoles in the brain area. In addition, the model group showed lipid deposition in the liver, up-regulated mRNA and protein levels of CLOCK and BMAL1 (P<0.01), and down-regulated mRNA and protein levels of Cry1 and PER2 (P<0.01) in the hypothalamus and liver. Compared with the model group, all the three modified Ditan tang groups showed lowered levels of TG, TC, LDL-C, ALT, and AST (P<0.05, P<0.01) and an elevated level of HDL-C (P<0.05) in the serum, and lowered levels of TG and NEFA (P<0.05, P<0.01) in the liver. Furthermore, the three groups showed alleviated pyknosis and deep staining of hypothalamic neuron cells, reduced lipid deposition in the liver, down-regulated mRNA and protein levels of CLOCK and BMAL1 (P<0.05, P<0.01), and up-regulated mRNA and protein levels of Cry1 and PER2 (P<0.05, P<0.01) in the hypothalamus and liver. ConclusionModified Ditan tang can reduce lipid deposition in the liver and regulate the expression of CLOCK, BMAL1, Cry1, and PER2 in the TTFL of NAFLD rats.
2.Analysis of T7 RNA Polymerase: From Structure-function Relationship to dsRNA Challenge and Biotechnological Applications
Wei-Chen NING ; Yu HUA ; Hui-Ling YOU ; Qiu-Shi LI ; Yao WU ; Yun-Long LIU ; Zhen-Xin HU
Progress in Biochemistry and Biophysics 2025;52(9):2280-2294
T7 RNA polymerase (T7 RNAP) is one of the simplest known RNA polymerases. Its unique structural features make it a critical model for studying the mechanisms of RNA synthesis. This review systematically examines the static crystal structure of T7 RNAP, beginning with an in-depth examination of its characteristic “thumb”, “palm”, and “finger” domains, which form the classic “right-hand-like” architecture. By detailing these structural elements, this review establishes a foundation for understanding the overall organization of T7 RNAP. This review systematically maps the functional roles of secondary structural elements and their subdomains in transcriptional catalysis, progressively elucidating the fundamental relationships between structure and function. Further, the intrinsic flexibility of T7 RNAP and its applications in research are also discussed. Additionally, the review presents the structural diagrams of the enzyme at different stages of the transcription process, and through these diagrams, it provides a detailed description of the complete transcription process of T7 RNAP. By integrating structural dynamics and kinetics analyses, the review constructs a comprehensive framework that bridges static structure to dynamic processes. Despite its advantages, T7 RNAP has a notable limitation: it generates double-stranded RNA (dsRNA) as a byproduct. The presence of dsRNA not only compromises the purity of mRNA products but also elicits nonspecific immune responses, which pose significant challenges for biotechnological and therapeutic applications. The review provides a detailed exploration of the mechanisms underlying dsRNA formation during T7 RNAP catalysis, reviews current strategies to mitigate this issue, and highlights recent progress in the field. A key focus is the semi-rational design of T7 RNAP mutants engineered to minimize dsRNA generation and enhance catalytic performance. Beyond its role in transcription, T7 RNAP exhibits rapid development and extensive application in fields, including gene editing, biosensing, and mRNA vaccines. This review systematically examines the structure-function relationships of T7 RNAP, elucidates the mechanisms of dsRNA formation, and discusses engineering strategies to optimize its performance. It further explores the engineering optimization and functional expansion of T7 RNAP. Furthermore, this review also addresses the pressing issues that currently need resolution, discusses the major challenges in the practical application of T7 RNAP, and provides an outlook on potential future research directions. In summary, this review provides a comprehensive analysis of T7 RNAP, ranging from its structural architecture to cutting-edge applications. We systematically examine: (1) the characteristic right-hand domains (thumb, palm, fingers) that define its minimalistic structure; (2) the structure-function relationships underlying transcriptional catalysis; and (3) the dynamic transitions during the complete transcription cycle. While highlighting T7 RNAP’s versatility in gene editing, biosensing, and mRNA vaccine production, we critically address its major limitation—dsRNA byproduct formation—and evaluate engineering solutions including semi-rationally designed mutants. By synthesizing current knowledge and identifying key challenges, this work aims to provide novel insights for the development and application of T7 RNAP and to foster further thought and progress in related fields.
3.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
4.Clinical Features, Prognostic Analysis and Predictive Model Construction of Central Nervous System Invasion in Peripheral T-Cell Lymphoma.
Ya-Ting MA ; Yan-Fang CHEN ; Zhi-Yuan ZHOU ; Lei ZHANG ; Xin LI ; Xin-Hua WANG ; Xiao-Rui FU ; Zhen-Chang SUN ; Yu CHANG ; Fei-Fei NAN ; Ling LI ; Ming-Zhi ZHANG
Journal of Experimental Hematology 2025;33(3):760-768
OBJECTIVE:
To investigate the clinical features and prognosis of central nervous system (CNS) invasion in peripheral T-cell lymphoma (PTCL) and construct a risk prediction model for CNS invasion.
METHODS:
Clinical data of 395 patients with PTCL diagnosed and treated in the First Affiliated Hospital of Zhengzhou University from 1st January 2013 to 31st December 2022 were analyzed retrospectively.
RESULTS:
The median follow-up time of 395 PTCL patients was 24(1-143) months. There were 13 patients diagnosed CNS invasion, and the incidence was 3.3%. The risk of CNS invasion varied according to pathological subtype. The incidence of CNS invasion in patients with anaplastic large cell lymphoma (ALCL) was significantly higher than in patients with angioimmunoblastic T-cell lymphoma (AITL) (P <0.05). The median overall survival was significantly shorter in patients with CNS invasion than in those without CNS involvement, with a median survival time of 2.4(0.6-127) months after diagnosis of CNS invasion. The results of univariate and multivariate analysis showed that more than 1 extranodal involvement (HR=4.486, 95%CI : 1.166-17.264, P =0.029), ALCL subtype (HR=9.022, 95%CI : 2.289-35.557, P =0.002) and ECOG PS >1 (HR=15.890, 95%CI : 4.409-57.262, P <0.001) were independent risk factors for CNS invasion in PTCL patients. Each of these risk factors was assigned a value of 1 point and a new prediction model was constructed. It could stratify the patients into three distinct groups: low-risk group (0-1 point), intermediate-risk group (2 points) and high-risk group (3 points). The 1-year cumulative incidence of CNS invasion in the high-risk group was as high as 50.0%. Further evaluation of the model showed good discrimination and accuracy, and the consistency index was 0.913 (95%CI : 0.843-0.984).
CONCLUSION
The new model shows a precise risk assessment for CNS invasion prediction, while its specificity and sensitivity need further data validation.
Humans
;
Lymphoma, T-Cell, Peripheral/pathology*
;
Prognosis
;
Retrospective Studies
;
Central Nervous System Neoplasms/pathology*
;
Neoplasm Invasiveness
;
Male
;
Female
;
Central Nervous System/pathology*
;
Middle Aged
;
Adult
5.RNA Sequencing Reveals Molecular Alternations of Splenocytes Associated with Anti-FⅧ Immune Response in Hemophilia A Murine Model.
Chen-Chen WANG ; Ya-Li WANG ; Yuan-Hua CAI ; Qiao-Yun ZHENG ; Zhen-Xing LIN ; Ying-Yu CHEN
Journal of Experimental Hematology 2025;33(5):1476-1485
OBJECTIVE:
To investigate the molecular alterations of splenocytes associated with anti-factor Ⅷ (FⅧ) immune response and the underlying mechanisms based on hemophilia A (HA) murine model via RNA sequencing (RNA-seq) technology.
METHODS:
Severe HA mice were immunized with recombinant human factor Ⅷ (rhF8) weekly for 4 weeks to establish an FⅧ inhibitor model. High quality raw data were obtained by using bulk RNA-seq and CASAVA base identification technology, and the differentially expressed genes (DEGs) were identified. The DEGs were statistically classified by gene ontology (GO) annotation to obtain information on the major signaling pathways and biological processes involved in anti-FⅧ immune response in HA mouse splenocytes. The cell clusters, genes, and signaling pathway datasets were comprehensively analyzed by GO, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis and single cell RNA-seq (ScRNA-seq) analysis, respectively. Flow cytometry analysis was used to verify the changes in T follicular helper cells (Tfh) and regulatory T cells (Treg).
RESULTS:
A total of 3731 DEGs was identified, including 2275 genes with up-regulated expression and 1456 genes with down-regulated expression. The DEGs were enriched in helper T cell differentiation, cytokine receptor, T cell receptor signaling pathway, ferroptosis, etc. Uniform Manifold Approximation and Project (UMAP) downscaling and visualization analysis yielded a total number of 11 T/NK cell subsets, visualizing the overall expression distribution of C-X-C chemokine-specific receptor gene cxcr5 among these T/NK cell subsets. Higher expression of cxcr5 was found in activated Tfh from FⅧ inhibitor mice, in comparison to the control group. The visualization using Upset plot R language showed a close interaction between Tfh and Treg. Moreover, the increased frequencies of Tfh and the decreased frequencies of Treg in inhibitor mouse splenocytes were further verified by flow cytometry analysis.
CONCLUSION
Multiple immune cell subsets, signaling pathways, and characteristic genes may be involved in the process of anti-FⅧ immune response in HA mouse splenocytes. The molecules involved in the regulation of Tfh/Treg may play key roles, which provide potential biological targets and therapeutic strategies for HA patients with inhibitors in the future.
Animals
;
Hemophilia A/genetics*
;
Mice
;
Sequence Analysis, RNA
;
Disease Models, Animal
;
Spleen/cytology*
;
T-Lymphocytes, Regulatory/immunology*
;
Humans
;
Signal Transduction
;
Factor VIII/immunology*
;
T-Lymphocytes, Helper-Inducer/immunology*
6.Predictive efficacy of serum hepcidin, ferritin, and q-Dioxn MRI for upgrading, upstaging, and biochemical recurrence in prostate cancer patients: A comparative study.
Zhen TIAN ; Guang-Zheng LI ; Ren-Peng HUANG ; Si-Yu WANG ; Li-Chen JIN ; Yu-Xin LIN ; Yu-Hua HUANG
National Journal of Andrology 2025;31(9):800-806
OBJECTIVE:
The aim of this study is to explore the correlation among serum hepcidin, ferritin, and q-Dioxn MRI with upgrading, upstaging and biochemical recurrence in prostate cancer (PCa) patients.
METHODS:
A total of 103 PCa patients diagnosed by biopsy were selected for this study. All patients underwent q-Dixon MRI prior to biopsy for T2* value measurement. Then serum hepcidin and ferritin were measured before receiving radical prostatectomy. Pathological grading and staging were conducted both preoperatively and postoperatively. The correlations among hepcidin, ferritin, T2* values, and postoperative upgrading, upstaging, biochemical recurrence were subsequently analyzed.
RESULTS:
The hepcidin level of PCa patients was measured at (123.51 ± 23.03) ng/mL, while the ferritin level was recorded at (239.80 ± 79.59) ng/mL, and the T2* value was (41.07 ± 6.37) ms. A total of 49 and 36 cases were observed with upgrading and upstaging in postoperative pathology, respectively. The median follow-up duration was 28.0 months (6.0-38.0 months), during which biochemical recurrence was observed in 12 cases. For upgrading, hepcidin and ferritin demonstrated the predictive efficacy, with areas under the ROC curve of 0.777 and 0.642, respectively, whereas T2* values did not show sufficient predictive power. For upstaging, hepcidin, ferritin, and T2* exhibited predictive efficacy, with areas under the ROC curve of 0.806, 0.696, and 0.655, respectively. Multivariate Logistic regression analysis indicated that hepcidin served as an independent risk factor for both upgrading (OR 1.055, 95%CI 1.027-1.085, P<0.001) and upstaging (OR 1.094, 95%CI 1.040-1.152, P<0.001). Cox regression analysis showed that hepcidin (95%CI 1.000-1.052, P = 0.049) was a significant risk factor for predicting biochemical recurrence.
CONCLUSION
Hepcidin could serve as a predictor for pathological upgrading, upstaging and biochemical recurrence after radical prostatectomy, which provides a novel potential index for risk stratification and prognostic evaluation of PCa patients.
Humans
;
Male
;
Prostatic Neoplasms/diagnosis*
;
Hepcidins/blood*
;
Ferritins/blood*
;
Middle Aged
;
Magnetic Resonance Imaging/methods*
;
Aged
;
Neoplasm Recurrence, Local
;
Neoplasm Staging
8.Effect of Acupuncture on Clinical Symptoms of Patients with Intractable Facial Paralysis: A Multicentre, Randomized, Controlled Trial.
Hong-Yu XIE ; Ze-Hua WANG ; Wen-Jing KAN ; Ai-Hong YUAN ; Jun YANG ; Min YE ; Jie SHI ; Zhen LIU ; Hong-Mei TONG ; Bi-Xiang CHA ; Bo LI ; Xu-Wen YUAN ; Chao ZHOU ; Xiao-Jun LIU
Chinese journal of integrative medicine 2025;31(9):773-781
OBJECTIVE:
To evaluate the clinical effect and safety of acupuncture manipulation on treatment of intractable facial paralysis (IFP), and verify the practicality and precision of the Anzhong Facial Paralysis Precision Scale (Eyelid Closure Grading Scale, AFPPS-ECGS).
METHODS:
A multicentre, single-blind, randomized controlled trial was conducted from October 2022 to June 2024. Eighty-nine IFP participants were randomly assigned to an ordinary acupuncture group (OAG, 45 cases) and a characteristic acupuncture group (CAG, 44 cases) using a random number table method. The main acupoints selected included Yangbai (GB 14), Quanliao (SI 18), Yingxiang (LI 20), Shuigou (GV 26), Dicang (ST 4), Chengjiang (CV 24), Taiyang (EX-HN 5), Jiache (ST 6), Fengchi (GB 20), and Hegu (LI 4). The OAG patients received ordinary acupuncture manipulation, while the CAG received characteristic acupuncture manipulation. Both groups received acupuncture treatment 3 times a week, with 10 times per course, lasting for 10 weeks. Facial recovery was assessed at baseline and after the 1st, 2nd and 3rd treatment course by AFPPS-ECGS and the House-Brackmann (H-B) Grading Scale. Infrared thermography technology was used to observe the temperature difference between healthy and affected sides in various facial regions. Adverse events and laboratory test abnormalities were recorded. The correlation between the scores of the two scales was analyzed using Pearson correlation coefficient.
RESULTS:
After the 2nd treatment course, the two groups showed statistically significant differences in AFPPS-ECGS scores (P<0.05), with even greater significance after the 3rd course (P<0.01). Similarly, H-B Grading Scale scores demonstrated significant differences between groups following the 3rd treatment course (P<0.05). Regarding temperature measurements, significant differences in temperatures of frontal and ocular areas were observed after the 2nd course (P<0.05), becoming more pronounced after the 3rd course (P<0.01). Additionally, mouth corner temperature differences reached statistical significance by the 3rd course (P<0.05). No safety-related incidents were observed during the study. Correlation analysis revealed that the AFPPS-ECGS and the H-B Grading Scale were strongly correlated (r=0.86, 0.91, 0.93, and 0.91 at baseline, and after 1st, 2nd, and 3rd treatment course, respectively, all P<0.01).
CONCLUSIONS
Acupuncture is an effective treatment for IFP, and the characteristic acupuncture manipulation enhances the therapeutic effect. The use of the AFPPS-ECGS can more accurately reflect the recovery status of patients with IFP. (Trial registration No. ChiCTR2200065442).
Humans
;
Acupuncture Therapy/methods*
;
Facial Paralysis/therapy*
;
Female
;
Male
;
Middle Aged
;
Adult
;
Treatment Outcome
;
Acupuncture Points
;
Aged
9.International clinical practice guideline on the use of traditional Chinese medicine for functional dyspepsia (2025).
Sheng-Sheng ZHANG ; Lu-Qing ZHAO ; Xiao-Hua HOU ; Zhao-Xiang BIAN ; Jian-Hua ZHENG ; Hai-He TIAN ; Guan-Hu YANG ; Won-Sook HONG ; Yu-Ying HE ; Li LIU ; Hong SHEN ; Yan-Ping LI ; Sheng XIE ; Jin SHU ; Bin-Fang ZENG ; Jun-Xiang LI ; Zhen LIU ; Zheng-Hua XIAO ; Jing-Dong XIAO ; Pei-Yong ZHENG ; Shao-Gang HUANG ; Sheng-Liang CHEN ; Gui-Jun FEI
Journal of Integrative Medicine 2025;23(5):502-518
Functional dyspepsia (FD), characterized by persistent or recurrent dyspeptic symptoms without identifiable organic, systemic or metabolic causes, is an increasingly recognized global health issue. The objective of this guideline is to equip clinicians and nursing professionals with evidence-based strategies for the management and treatment of adult patients with FD using traditional Chinese medicine (TCM). The Guideline Development Group consulted existing TCM consensus documents on FD and convened a panel of 35 clinicians to generate initial clinical queries. To address these queries, a systematic literature search was conducted across PubMed, EMBASE, the Cochrane Library, China National Knowledge Infrastructure (CNKI), VIP Database, China Biology Medicine (SinoMed) Database, Wanfang Database, Traditional Medicine Research Data Expanded (TMRDE), and the Traditional Chinese Medical Literature Analysis and Retrieval System (TCMLARS). The evidence from the literature was critically appraised using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. The strength of the recommendations was ascertained through a consensus-building process involving TCM and allopathic medicine experts, methodologists, pharmacologists, nursing specialists, and health economists, leveraging their collective expertise and empirical knowledge. The guideline comprises a total of 43 evidence-informed recommendations that span a range of clinical aspects, including the pathogenesis according to TCM, diagnostic approaches, therapeutic interventions, efficacy assessments, and prognostic considerations. Please cite this article as: Zhang SS, Zhao LQ, Hou XH, Bian ZX, Zheng JH, Tian HH, Yang GH, Hong WS, He YY, Liu L, Shen H, Li YP, Xie S, Shu J, Zeng BF, Li JX, Liu Z, Xiao ZH, Xiao JD, Zheng PY, Huang SG, Chen SL, Fei GJ. International clinical practice guideline on the use of traditional Chinese medicine for functional dyspepsia (2025). J Integr Med. 2025; 23(5):502-518.
Dyspepsia/drug therapy*
;
Humans
;
Medicine, Chinese Traditional/methods*
;
Practice Guidelines as Topic
;
Drugs, Chinese Herbal/therapeutic use*
10.Laboratory Diagnosis and Molecular Epidemiological Characterization of the First Imported Case of Lassa Fever in China.
Yu Liang FENG ; Wei LI ; Ming Feng JIANG ; Hong Rong ZHONG ; Wei WU ; Lyu Bo TIAN ; Guo CHEN ; Zhen Hua CHEN ; Can LUO ; Rong Mei YUAN ; Xing Yu ZHOU ; Jian Dong LI ; Xiao Rong YANG ; Ming PAN
Biomedical and Environmental Sciences 2025;38(3):279-289
OBJECTIVE:
This study reports the first imported case of Lassa fever (LF) in China. Laboratory detection and molecular epidemiological analysis of the Lassa virus (LASV) from this case offer valuable insights for the prevention and control of LF.
METHODS:
Samples of cerebrospinal fluid (CSF), blood, urine, saliva, and environmental materials were collected from the patient and their close contacts for LASV nucleotide detection. Whole-genome sequencing was performed on positive samples to analyze the genetic characteristics of the virus.
RESULTS:
LASV was detected in the patient's CSF, blood, and urine, while all samples from close contacts and the environment tested negative. The virus belongs to the lineage IV strain and shares the highest homology with strains from Sierra Leone. The variability in the glycoprotein complex (GPC) among different strains ranged from 3.9% to 15.1%, higher than previously reported for the seven known lineages. Amino acid mutation analysis revealed multiple mutations within the GPC immunogenic epitopes, increasing strain diversity and potentially impacting immune response.
CONCLUSION
The case was confirmed through nucleotide detection, with no evidence of secondary transmission or viral spread. The LASV strain identified belongs to lineage IV, with broader GPC variability than previously reported. Mutations in the immune-related sites of GPC may affect immune responses, necessitating heightened vigilance regarding the virus.
Humans
;
China/epidemiology*
;
Genome, Viral
;
Lassa Fever/virology*
;
Lassa virus/classification*
;
Molecular Epidemiology
;
Phylogeny

Result Analysis
Print
Save
E-mail