1.Determination of biological activity of teduglutide by a homogeneous time-resolved fluorescence method
Xiao-ming ZHANG ; Ran MA ; Li-jing LÜ ; Lü-yin WANG ; Ping LÜ ; Cheng-gang LIANG ; Jing LI
Acta Pharmaceutica Sinica 2025;60(1):211-217
In this study, we constructed a GLP-2R-HEK293 cell line and established a method for the determination of the
2.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
3.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
4.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
5.Molecular characterization of FGFR fusion in a large real-world population and clinical utility of bidirectional fusion.
Xinyi ZHANG ; Jing ZHAO ; Ling MA ; Yitong TIAN ; Jiaguang ZHANG ; Hejian ZHENG ; Junling ZHANG ; Runyu HE ; Luhang JIN ; Jing MA ; Mengli HUANG ; Xiao LI ; Xiaofeng CHEN
Chinese Medical Journal 2025;138(12):1510-1512
6.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
7.Research progress on the impact and mechanism of neutrophil extracellular traps (NETs) components in atherosclerosis.
Xin CHEN ; Jing-Jing ZHU ; Xiao-Fan YANG ; Yu-Peng MA ; Yi-Min BAO ; Ke NING
Acta Physiologica Sinica 2025;77(1):107-119
Atherosclerosis (AS) is a prevalent clinical vascular condition and serves as a pivotal pathological foundation for cardiovascular diseases. Understanding the pathogenesis of AS has significant clinical and societal implications, aiding in the development of targeted drugs. Neutrophils, the most abundant leukocytes in circulation, assume a central role during inflammatory responses and closely interact with AS, which is a chronic inflammatory vascular disease. Neutrophil extracellular traps (NETs) are substantial reticular formations discharged by neutrophils that serve as an immune defense mechanism. These structures play a crucial role in inducing dysfunction of the vascular barrier following endothelial cell injury. Components released by NETs pose a threat to the integrity of vascular endothelium, which is essential as it acts as the primary barrier to maintain vascular wall integrity. Endothelial damage constitutes the initial stage in the onset of AS. Recent investigations have explored the intricate involvement of NETs in AS progression. The underlying structures of NETs and their active ingredients, including histone, myeloperoxidase (MPO), cathepsin G, neutrophil elastase (NE), matrix metalloproteinases (MMPs), antimicrobial peptide LL-37, alpha-defensin 1-3, and high mobility group protein B1 have diverse and complex effects on AS through various mechanisms. This review aims to comprehensively examine the interplay between NETs and AS while providing insights into their mechanistic underpinnings of NETs in this condition. By shedding light on this intricate relationship, this exploration paves the way for future investigations into NETs while guiding clinical translation efforts and charting new paths for therapeutic interventions.
Extracellular Traps/physiology*
;
Humans
;
Atherosclerosis/immunology*
;
Neutrophils/physiology*
;
Leukocyte Elastase/metabolism*
;
Peroxidase/physiology*
;
Matrix Metalloproteinases/physiology*
;
Cathepsin G/metabolism*
;
Cathelicidins
;
HMGB1 Protein/physiology*
;
Histones
;
Animals
;
Endothelium, Vascular
8.Phenylpropanoids from roots of Berberis polyantha.
Dong-Mei SHA ; Shuai-Cong NI ; Li-Niu SHA-MA ; Hai-Xiao-Lin-Mo MA ; Xiao-Yong HE ; Bin HE ; Shao-Shan ZHANG ; Ying LI ; Jing WEN ; Yuan LIU ; Xin-Jia YAN
China Journal of Chinese Materia Medica 2025;50(6):1564-1568
The chemical constituents were systematically separated from the roots of Berberis polyantha by various chromatographic methods, including silica gel column chromatography, HP20 column chromatography, polyamide column chromatography, reversed-phase C_(18) column chromatography, and preparative high-performance liquid chromatography. The structures of the compounds were identified by physicochemical properties and spectroscopic techniques(1D NMR, 2D NMR, UV, MS, and CD). Four phenylpropanoids were isolated from the methanol extract of the roots of B. polyantha, and they were identified as(2R)-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone-O-β-D-glucopyranoside(1), methyl 4-hydroxy-3,5-dimethoxybenzoate(2),(+)-syringaresinol(3), and syringaresinol-4-O-β-D-glucopyranoside(4). Compound 1 was a new compound, and other compounds were isolated from this plant for the first time. The anti-inflammatory activity of these compounds was evaluated based on the release of nitric oxide(NO) in the culture of lipopolysaccharide(LPS)-induced RAW264.7 macrophages. At a concentration of 10 μmol·L~(-1), all the four compounds inhibited the LPS-induced release of NO in RAW264.7 cells, demonstrating potential anti-inflammatory properties.
Plant Roots/chemistry*
;
Animals
;
Mice
;
Berberis/chemistry*
;
RAW 264.7 Cells
;
Macrophages/immunology*
;
Drugs, Chinese Herbal/isolation & purification*
;
Nitric Oxide/metabolism*
;
Molecular Structure
;
Anti-Inflammatory Agents/isolation & purification*
9.Clinical and genetic features of 5 neonates with centronuclear myopathy caused by MTM1 gene variation.
Tian XIE ; Jia-Jing GE ; Zi-Ming ZHANG ; Ding-Wen WU ; Yan-Ping XU ; Li-Ping SHI ; Xiao-Lu MA ; Zheng CHEN
Chinese Journal of Contemporary Pediatrics 2025;27(9):1071-1075
OBJECTIVES:
To study clinical manifestations and gene mutation features of neonates with centronuclear myopathy.
METHODS:
A retrospective analysis was conducted on the medical data of 5 neonates with centronuclear myopathy diagnosed in the Neonatal Intensive Care Unit of Children's Hospital, Zhejiang University School of Medicine from January 2020 to August 2024. The data included gender, gestational age, birth weight, Apgar score, clinical manifestations, creatine kinase level, electromyography, genetic testing results and the outcomes of the infants.
RESULTS:
All 5 male neonates had a history of postpartum asphyxia and resuscitation. They all presented with hypotonia, myasthenia, and respiratory failure; two neonates also had swallowing dysfunction. Of the five neonates, three had normal creatine kinase levels, while two had slightly elevated levels. Electromyography was performed for three neonates, among whom two had myogenic damage. MTM1 gene mutations were identified by genetic testing in all five neonates, including two nonsense mutations and three missense mutations, among which one variant had not been previously reported. Four mutations were inherited from the mother, and the other one was a de novo mutation. The five neonates showed no clinical improvement following treatment, failed weaning from mechanical ventilation, and ultimately died after withdrawal of life-sustaining therapy.
CONCLUSIONS
Centronuclear myopathy caused by MTM1 gene mutation often has a severe phenotype and a poor prognosis, and it should be considered for neonates with hypotonia and myasthenia after birth. Genetic testing should be performed as soon as possible.
Humans
;
Myopathies, Structural, Congenital/genetics*
;
Male
;
Infant, Newborn
;
Retrospective Studies
;
Mutation
;
Female
;
Protein Tyrosine Phosphatases, Non-Receptor/genetics*
10.Efficacy Prediction of Platelet Count Trajectories after Induction Therapy with Venetoclax Combined with Azacitidine in Newly Diagnosed AML Patients.
Qian-Ying MA ; Xiao-Rui JING ; Han-Chun WANG ; Hui-Rong WU ; Juan CHENG
Journal of Experimental Hematology 2025;33(2):331-338
OBJECTIVE:
To investigate platelet count trajectories after induction therapy with venetoclax combined with azacitidine (VA regimen) in newly diagnosed AML patients and further analyze its clinical significance.
METHODS:
Clinical date of 50 newly diagnosed AML patients who received VA treatment from March 2020 to July 2023 in Department of Hematology of the First Hospital of Lanzhou University were retrospectively collected. The platelet trajectories after induction chemotherapy were constructed by using group-based trajectory modeling. To study the association between diverse trajectories of platelet counts and compound complete remission (cCR) rate, overall response rate (ORR), minimal residual disease (MRD) negative rate and overall survival (OS) rate. The Cox proportional hazard model was used to evaluate the relationship between platelet trajectory and OS. The logistic regression was used to analyze the influence of individual characteristics on platelet trajectory.
RESULTS:
Two platelet trajectories were identified based on the model, including platelet slowly increased group (n=31, 62.0%) and platelet rapidly increased group (n=19, 38.0%). There were statistically significant differences in cCR rate, ORR and OS rate between platelet slowly increased group and platelet rapidly increased group (all P < 0.05). The Cox regression analysis showed that platelet rapidly increased group was associated with a decreased risk of mortality compared with platelet slowly increased group (HR=0.153, 95%CI : 0.045-0.527, P =0.003). Logistic regression analysis showed that IDH1/2 mutation (OR =3.908, 95%CI : 1.023-14.923, P =0.046) and platelet transfusion (OR =0.771, 95%CI : 0.620-0.959, P =0.020) were independent influencing factors of platelet trajectory.
CONCLUSION
The dynamic trajectory of platelet counts in newly diagnosed AML patients who received VA treatment can serve as a significant indicator to observe the efficacy and prognosis. The platelet rapidly increased is an independent protective factor for good prognosis. TheIDH1 /2 mutation and platelet transfusion are independent influencing factors of platelet trajectory.
Humans
;
Leukemia, Myeloid, Acute/blood*
;
Sulfonamides/administration & dosage*
;
Azacitidine/therapeutic use*
;
Platelet Count
;
Retrospective Studies
;
Bridged Bicyclo Compounds, Heterocyclic/administration & dosage*
;
Male
;
Female
;
Antineoplastic Combined Chemotherapy Protocols/therapeutic use*
;
Induction Chemotherapy
;
Survival Rate

Result Analysis
Print
Save
E-mail