1.Neuroprotective Mechanism of Yifei Xuanfei Jiangzhuo Prescription on VaD Rats Based on NF-κB/NLRP3 Signaling Pathway
Bingmao YUAN ; Wei CHEN ; Xiu LAN ; Lingfei JIANG ; Lin WU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):88-96
ObjectiveTo investigate the molecular mechanism by which Yifei Xuanfei Jiangzhuo prescription regulates the nuclear factor-κB (NF-κB)/NOD-like receptor protein 3 (NLRP3) signaling pathway to improve neuronal function in vascular dementia (VaD) rats. MethodsA VaD model was established by intermittently clamping the bilateral common carotid arteries (CCA) combined with bilateral vascular occlusion (2-VO). Eighty-four SD rats were randomly divided into a blank group, sham group, model group, piracetam group (0.2 g·kg-1), and low-, medium-, and high-dose Yifei Xuanfei Jiangzhuo prescription groups (6.09, 12.18, and 24.36 g·kg-1). Drug administration began on day 7 after surgery, once daily for 28 consecutive days. Behavioral experiments were used to evaluate learning and spatial memory. Hematoxylin-eosin (HE) staining was applied to observe pathological morphological changes in the CA1 region of the hippocampus. Transmission electron microscopy was used to examine the ultrastructure of hippocampal neurons. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect neuronal apoptosis in the CA1 region. Immunohistochemistry was performed to determine the positive expression rate of neuronal nuclear antigen (NeuN). Immunofluorescence single staining was used to assess nuclear expression of NF-κB p65 in brain tissue. Western blot was used to detect the protein expression levels of inhibitor of κB kinase (IKK), NF-κB p65, NLRP3, Caspase-1, apoptosis-associated speck-like protein (ASC), and interleukin-1β (IL-1β). ResultsCompared with the blank group, the model group showed a significant reduction in platform-crossing frequency (P0.01), aggravated hippocampal injury, a significant increase in neuronal apoptosis (P0.05), decreased NeuN positivity in the CA1 region (P0.05), increased nuclear expression of NF-κB p65 (P0.05), and significantly elevated expression of p-IKK, p-NF-κB p65, NLRP3, cleaved Caspase-1, ASC, and cleaved IL-1β (P0.05). Compared with the model group, all drug-treated groups improved learning and spatial memory in VaD rats, alleviated hippocampal pathological injury and neuronal apoptosis, and protected neuronal ultrastructure. Yifei Xuanfei Jiangzhuo prescription at doses of 12.18 and 24.36 g·kg-1 reduced hippocampal expression levels of p-IKK, p-NF-κB p65, NLRP3, Caspase-1, ASC, and cleaved IL-1β in VaD rats (P0.05), showing dose-dependent inhibition of the NF-κB/NLRP3 signaling pathway. ConclusionYifei Xuanfei Jiangzhuo prescription may exert neuroprotective effects by regulating the NF-κB/NLRP3 signaling pathway, thereby reducing neuroinflammation and inhibiting hippocampal neuronal apoptosis.
2.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
3.Neuroprotective Mechanism of Yifei Xuanfei Jiangzhuo Prescription on VaD Rats Based on NF-κB/NLRP3 Signaling Pathway
Bingmao YUAN ; Wei CHEN ; Xiu LAN ; Lingfei JIANG ; Lin WU
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):88-96
ObjectiveTo investigate the molecular mechanism by which Yifei Xuanfei Jiangzhuo prescription regulates the nuclear factor-κB (NF-κB)/NOD-like receptor protein 3 (NLRP3) signaling pathway to improve neuronal function in vascular dementia (VaD) rats. MethodsA VaD model was established by intermittently clamping the bilateral common carotid arteries (CCA) combined with bilateral vascular occlusion (2-VO). Eighty-four SD rats were randomly divided into a blank group, sham group, model group, piracetam group (0.2 g·kg-1), and low-, medium-, and high-dose Yifei Xuanfei Jiangzhuo prescription groups (6.09, 12.18, and 24.36 g·kg-1). Drug administration began on day 7 after surgery, once daily for 28 consecutive days. Behavioral experiments were used to evaluate learning and spatial memory. Hematoxylin-eosin (HE) staining was applied to observe pathological morphological changes in the CA1 region of the hippocampus. Transmission electron microscopy was used to examine the ultrastructure of hippocampal neurons. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) was used to detect neuronal apoptosis in the CA1 region. Immunohistochemistry was performed to determine the positive expression rate of neuronal nuclear antigen (NeuN). Immunofluorescence single staining was used to assess nuclear expression of NF-κB p65 in brain tissue. Western blot was used to detect the protein expression levels of inhibitor of κB kinase (IKK), NF-κB p65, NLRP3, Caspase-1, apoptosis-associated speck-like protein (ASC), and interleukin-1β (IL-1β). ResultsCompared with the blank group, the model group showed a significant reduction in platform-crossing frequency (P0.01), aggravated hippocampal injury, a significant increase in neuronal apoptosis (P0.05), decreased NeuN positivity in the CA1 region (P0.05), increased nuclear expression of NF-κB p65 (P0.05), and significantly elevated expression of p-IKK, p-NF-κB p65, NLRP3, cleaved Caspase-1, ASC, and cleaved IL-1β (P0.05). Compared with the model group, all drug-treated groups improved learning and spatial memory in VaD rats, alleviated hippocampal pathological injury and neuronal apoptosis, and protected neuronal ultrastructure. Yifei Xuanfei Jiangzhuo prescription at doses of 12.18 and 24.36 g·kg-1 reduced hippocampal expression levels of p-IKK, p-NF-κB p65, NLRP3, Caspase-1, ASC, and cleaved IL-1β in VaD rats (P0.05), showing dose-dependent inhibition of the NF-κB/NLRP3 signaling pathway. ConclusionYifei Xuanfei Jiangzhuo prescription may exert neuroprotective effects by regulating the NF-κB/NLRP3 signaling pathway, thereby reducing neuroinflammation and inhibiting hippocampal neuronal apoptosis.
4.Exploring Mechanism of Yiqi Huoxue Jiedu Formula in Alleviating Immune Cell Exhaustion in Sepsis Based on Transcriptomics and Metabolomics
Rui CHEN ; Qiusha PAN ; Kaiqiang ZHONG ; Shuqi MA ; Wei HUANG ; Jiahua LAI ; Ruifeng ZENG ; Xiaotu XI ; Jun LI
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):109-118
ObjectiveTo observe the effects of Yiqi Huoxue Jiedu formula(YHJF) on immune cell exhaustion in the spleen of septic mice and to explore and validate its potential intervention targets. MethodsMice were randomly divided into the sham-operated, model, low-dose YHJF(4.1 g·kg-1), and high-dose YHJF(8.2 g·kg-1) groups. Except for the sham-operated group, a cecal ligation and puncture(CLP) procedure was performed to establish a mouse sepsis model. The treatment groups received oral administration of the corresponding doses, while the sham-operated and model groups received an equal volume of physiological saline. After the intervention, the 7-day survival rate of each group was recorded, and spleen samples were collected 72 h post-intervention, and the spleen index was calculated. Terminal deoxynucleotidyl transferase deoxyuridine triphosphate(dUTP) nick end labeling(TUNEL) staining was used to detect apoptosis in spleen cells. Enzyme-linked immunosorbent assay(ELISA) was performed to measure the levels of interleukin(IL)-4 and IL-10 in the serum. Transcriptomics and metabolomics were used to screen for differentially expressed genes(DEGs) and differential metabolites in the spleen, followed by bioinformatics analysis to identify key targets. Real-time quantitative polymerase chain reaction(Real-time PCR), flow cytometry, and multiplex immunofluorescence were used to verify the expressions of key genes and proteins. ResultsThe high-dose YHJF group significantly improved the 7-day survival rate of septic mice(P0.05). Compared with the sham-operated group, the model group showed a significant increase in apoptosis of spleen cells and a decrease in the spleen index at 72 h post-modeling, with markedly elevated peripheral serum IL-4 and IL-10 levels(P0.01). Compared with the model group, the high-dose YHJF group showed a reduction in apoptosis of spleen cells, an increase in the spleen index, and a significant decrease in peripheral serum IL-4 and IL-10 levels(P0.05). Spleen transcriptomics identified 255 DEGs between groups, potentially serving as intervention targets for YHJF. Gene Ontology(GO) enrichment analysis revealed that DEGs were mainly involved in biological processes such as natural killer(NK) cell-mediated positive immune regulation, cell killing, cytokine production, positive regulation of innate immune cells, and interferon production. Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis showed that DEGs were mainly involved in cytokine-cytokine receptor interactions, viral protein interactions with cytokines and cytokine receptors, chemokine signaling pathway, and nuclear transcription factor-κB(NF-κB) signaling pathway. Protein-protein interaction(PPI) network analysis identified CD160, granzyme B(GZMB), and chemokine ligand 4(CCL4) as key targets for YHJF in treating sepsis. Metabolomics identified 46 differential metabolites that were significantly reversed by YHJF intervention, and combined transcriptomics and metabolomics analysis identified 17 differential metabolites closely related to CD160. Pathway enrichment revealed that these metabolites were mainly involved in glycerophospholipid metabolism, arachidonic acid metabolism, glycosylphosphatidylinositol(GPI) anchor biosynthesis, linoleic acid metabolism, and α-linolenic acid metabolism pathways. Verification results showed that, compared with the sham-operated group, the model group exhibited significantly elevated CD160 mRNA expression level in the spleen, along with markedly decreased CCL4 and GZMB mRNA expression, and had a significant increase in CD160 expression on the surface of natural killer T(NKT) cells in the spleen(P0.01). Compared with the model group, the high-dose YHJF group had a significant decrease in CD160 mRNA expression in the spleen, a significant increase in CCL4 and GZMB mRNA expressions. Further flow cytometry and immunofluorescence revealed that compared with the sham-operated group, CD160 expression on the surface of splenic NKT cells in the model group was significantly increased(P0.01), while high-dose YHJF intervention significantly reduced CD160 expression(P0.01). ConclusionYHJF may alleviate NKT cell exhaustion in sepsis by downregulating the expression of the negative co-stimulatory molecule CD160, and this regulatory effect is closely related to fatty acid metabolism pathways. This study provides new insights and targets for further exploration of strengthening vital Qi and detoxifying strategy to improve immune cell exhaustion in acute deficiency syndrome of sepsis.
5.Pathogenic Mechanisms of Spleen Deficiency-Phlegm Dampness in Obesity and Traditional Chinese Medicine Prevention and Treatment Strategies:from the Perspective of Immune Inflammation
Yumei LI ; Peng XU ; Xiaowan WANG ; Shudong CHEN ; Le YANG ; Lihua HUANG ; Chuang LI ; Qinchi HE ; Xiangxi ZENG ; Juanjuan WANG ; Wei MAO ; Ruimin TIAN
Journal of Traditional Chinese Medicine 2026;67(1):31-37
Based on spleen deficiency-phlegm dampness as the core pathogenesis of obesity, and integrating recent advances in modern medicine regarding the key role of immune inflammation in obesity, this paper proposes a multidimensional pathogenic network of "obesity-spleen deficiency-phlegm dampness-immune imbalance". Various traditional Chinese medicine (TCM) herbs that strengthen the spleen, regulate qi, and resolve phlegm and dampness can treat obesity by improving spleen-stomach transport and transformation, promoting water-damp metabolism, and regulating immune homeostasis. This highlights immune inflammation as an important entry point to elucidate the TCM concepts of "spleen deficiency-phlegm dampness" and the therapeutic principle of "strengthening the spleen and eliminating dampness to treat obesity". By systematically analyzing the intrinsic connection between "spleen deficiency generating dampness, internal accumulation of phlegm dampness" and immune dysregulation in obesity, this paper aims to provide theoretical support for TCM treatment of obesity based on dampness.
6.Study on the apoptosis-inducing effect of esculetin on acute myeloid leukemia HL-60 cells via regulating the AKT/SKP2/MTH1 pathway
Weihua SONG ; Fuying CHU ; Wei XIE ; Jinliang CHEN ; Ping ZHAO ; Hong QIU ; Jian TAO ; Xiang CHEN
China Pharmacy 2026;37(1):36-41
OBJECTIVE To investigate the apoptosis-inducing effect of esculetin (Esc) on acute myeloid leukemia (AML) HL-60 cells by regulating the protein kinase B (AKT)/S-phase kinase-associated protein 2 (SKP2)/MutT homolog 1 (MTH1) pathway. METHODS AML HL-60 cells were randomly divided into control group (routine culture), Esc low-concentration group (L-Esc group, 25 μmol/L Esc), Esc medium-concentration group (M-Esc group, 50 μmol/L Esc), Esc high-concentration group (H-Esc group, 100 μmol/L Esc), and high-concentration of Esc+ SC79 (AKT agonist) group (100 μmol/L Esc+5 μmol/L SC79). Cell proliferation in each group was detected by MTT assay and colony formation assay. The level of reactive oxygen species (ROS) in cells was measured by using the CM-H2DCFDA fluorescent probe. Cell apoptosis was analyzed by flow cytometry. Western blot assay was performed to detect the expression levels of apoptosis-related proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated X protein (Bax), cleaved caspase-3], AKT/SKP2/MTH1 pathway-related proteins (p-AKT, AKT, SKP2, MTH1), along with the upstream and downstream proteins of AKT phosphatidylinositol 3-kinase (PI3K), cyclin-dependent kinase inhibitor 1 (P21) and cyclin-dependent kinase inhibitor 1B (P27). RESULTS Compared with control group, the cell viability, colony number, and the phosphorylation levels of AKT and PI3K proteins as well as protein expressions of SKP2, MTH1 and Bcl-2 were significantly decreased (P<0.05), while ROS level, apoptosis rate, and the expression levels of Bax, cleaved caspase-3, P21 and P27 proteins were significantly increased (P<0.05). Moreover, the effects of Esc exhibited concentration-dependence (P<0.05). Compared with H-Esc group, above indexes of high-concentration of Esc+ SC79 group were reversed significantly (P<0.05). CONCLUSIONS Esc may promote massive ROS production and induce activation of apoptosis in HL-60 cells by inhibiting the AKT/SKP2/MTH1 pathway, thus inhibiting the proliferation of HL-60 cells.
7.Construction and in vitro osteogenic activity study of magnesium-strontium co-doped hydroxyapatite mineralized collagen
WANG Meng ; SUN Yifei ; CAO Xiaoqing ; WEI Yiyuan ; CHEN Lei ; ZHANG Zhenglong ; MU Zhao ; ZHU Juanfang ; NIU Lina
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(1):15-28
Objective:
To investigate the efficacy of magnesium-strontium co-doped hydroxyapatite mineralized collagen (MSHA/Col) in improving the bone repair microenvironment and enhancing bone regeneration capacity, providing a strategy to address the insufficient biomimetic composition and limited bioactivity of traditional hydroxyapatite mineralized collagen (HA/Col) scaffolds.
Methods:
A high-molecular-weight polyacrylic acid-stabilized amorphous calcium magnesium strontium phosphate precursor (HPAA/ACMSP) was prepared. Its morphology and elemental distribution were characterized by high-resolution transmission electron microscopy (TEM) and energy-dispersive spectroscopy. Recombinant collagen sponge blocks were immersed in the HPAA/ACMSP mineralization solution. Magnesium-strontium co-doped hydroxyapatite was induced to deposit within collagen fibers (experimental group: MSHA/Col; control group: HA/Col). The morphological characteristics of MSHA/Col were observed using scanning electron microscopy (SEM). Its crystal structure and chemical composition were analyzed by X-ray diffraction and Fourier transform infrared spectroscopy, respectively. The mineral phase content was evaluated by thermogravimetric analysis. The scaffold's porosity, ion release, and in vitro degradation performance were also determined. For cytological experiments, CCK-8 assay, live/dead cell staining, alkaline phosphatase staining, alizarin red S staining, RT-qPCR, and western blotting were used to evaluate the effects of the MSHA/Col scaffold on the proliferation, viability, early osteogenic differentiation activity, late mineralization capacity, and gene and protein expression levels of key osteogenic markers [runt-related transcription factor 2 (Runx2), collagen type Ⅰ (Col-Ⅰ), osteopontin (Opn), and osteocalcin (Ocn)] in mouse embryonic osteoblast precursor cells (MC3T3-E1).
Results:
HPAA/ACMSP appeared as amorphous spherical nanoparticles under TEM, with energy spectrum analysis showing uniform distribution of carbon, oxygen, calcium, phosphorus, magnesium, and strontium elements. SEM results of MSHA/Col indicated successful complete intrafibrillar mineralization. Elemental analysis showed the mass fractions of magnesium and strontium were 0.72% (matching the magnesium content in natural bone) and 2.89%, respectively. X-ray diffraction revealed characteristic peaks of hydroxyapatite crystals (25.86°, 31°-34°). Infrared spectroscopy results showed characteristic absorption peaks for both collagen and hydroxyapatite. Thermogravimetric analysis indicated a mineral phase content of 78.29% in the material. The scaffold porosity was 91.6% ± 1.1%, close to the level of natural bone tissue. Ion release curves demonstrated sustained release behavior for both magnesium and strontium ions. The in vitro degradation rate matched the ingrowth rate of new bone tissue. Cytological experiments showed that MSHA/Col significantly promoted MC3T3-E1 cell proliferation (130% increase in activity at 72 h, P < 0.001). MSHA/Col exhibited excellent efficacy in promoting osteogenic differentiation, significantly upregulating the expression of osteogenesis-related genes and proteins (Runx2, Col-Ⅰ, Opn, Ocn) (P < 0.01).
Conclusion
The MSHA/Col scaffold achieves dual biomimicry of natural bone in both composition and structure, and effectively promotes osteogenic differentiation at the genetic and protein levels, breaking through the functional limitations of pure hydroxyapatite mineralized collagen. This provides a new strategy for the development of functional bone repair materials
8.Effect of Serum Containing Zhenwutang on Apoptosis of Myocardial Mast Cells and Mitochondrial Autophagy
Wei TANG ; Meiqun ZHENG ; Xiaolin WANG ; Zhiyong CHEN ; Chi CHE ; Zongqiong LU ; Jiashuai GUO ; Xiaomei ZOU ; Lili XU ; Lin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):11-21
ObjectiveTo explore the effect of serum containing Zhenwutang on myocardial mast cell apoptosis induced by angiotensin Ⅱ (AngⅡ) and the mechanism of the correlation between apoptosis and mitochondrial autophagy. MethodsIn this experiment, AngⅡ and serum containing Zhenwutang with different concentrations were used to interfere with H9C2 cardiomyocytes for 24 h, and the survival rate of H9C2 cardiomyocytes was detected by cell counting kit-8 (CCK-8) to screen the optimal concentration for the experiment. Enzyme-linked immunosorbent assay (ELISA) was used to detect the content of B-type natriuretic peptide (BNP) in cell culture supernatant, and immunofluorescence was used to detect the cell surface area to verify the construction of the myocardial mast cell model. Subsequently, the experiment was divided into a blank group (20% blank serum), a model group (20% blank serum + 5×10-5 mol·L-1 AngⅡ), low-, medium-, and high-dose (5%, 10% and 20%) serum containing Zhenwutang groups, an autophagy inhibitor group (1×10-4 mol·L-1 3-MA), and autophagy inducer group (1×10-7 mol·L-1 rapamycin). The apoptosis level of H9C2 cells and the changes of mitochondrial membrane potential were detected by flow cytometry. The lysosomal probe (Lyso Tracker) and mitochondrial probe (Mito Tracker) co-localization was employed to detect autophagy. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect Caspase-3, Caspase-9, B-cell lymphoma 2 (Bcl-2), Bcl-2-related X protein (Bax), and cytochrome C (Cyt C) in apoptosis-related pathways and the relative mRNA expression of ubiquitin ligase (Parkin), phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1), and p62 protein in mitochondrial autophagy-related pathways. Western blot was used to detect cleaved Caspase-3, cleaved Caspase-9, Bax, Bcl-2, and Cyt C in apoptosis-related pathways, phosphorylated ubiquitin ligase (p-Parkin), phosphorylated PTEN-induced kinase 1 (p-PINK1), p62, and Bcl-2 homology domain protein Beclin1 in mitochondrial autophagy-related pathways, and the change of microtubule-associated protein 1 light chain 3 (LC3) Ⅱ/Ⅰ ratio. ResultsCCK-8 showed that when the concentration of AngⅡ was 5×10-5 mol·L-1, the cell activity was the lowest, and there was no cytotoxicity. At this concentration, the surface area of cardiomyocytes was significantly increased (P<0.01), and the content of BNP in the supernatant of culture medium was significantly increased (P<0.05). Therefore, AngⅡ with a concentration of 5×10-5 mol·L-1 was selected for the subsequent modeling of myocardial mast cells. Compared with the blank group, the model group and the autophagy inhibitor 3-MA group had a significantly increased apoptosis rate (P<0.01) and significantly decreased mitochondrial membrane potential (P<0.01). The results of immunofluorescence co-localization showed that compared with the blank group, the model group had a significantly decreased number of red and green fluorescence spots. The results of Real-time PCR showed that compared with that in the blank group, the relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 in the model group was significantly up-regulated (P<0.01), while the relative mRNA expression of Bcl-2, Parkin, and PINK1 was significantly down-regulated (P<0.01). In addition, the relative protein expression of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 was significantly up-regulated (P<0.01). The LC3Ⅱ/Ⅰ was significantly decreased, and the relative protein expression of Bcl-2, p-Parkin, p-PINK1, and Beclin1 was significantly down-regulated (P<0.01). Compared with the model group, the serum containing Zhenwutang groups and the autophagy inducer group had significantly decreased apoptosis rate (P<0.01), and the decrease ratio of mitochondrial membrane potential is significantly lowered (P<0.01) in a dose-dependent manner. Additionally, both red and green fluorescence spots became more in these groups. In the 3-MA group, the number of red and green fluorescence spots decreased significantly. The relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 was significantly down-regulated (P<0.05, P<0.01), while that of Bcl-2, Parkin, and PINK1 was significantly up-regulated (P<0.01). In the serum containing Zhenwutang groups, the relative protein expression levels of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 were significantly down-regulated (P<0.05,P<0.01). The LC3Ⅱ/Ⅰ was significantly increased, and the relative protein expression levels of Bcl-2, p-Parkin, p-PINK1, and Beclin1 were significantly up-regulated (P<0.01). ConclusionThe serum containing Zhenwutang can reduce the apoptosis of myocardial mast cells and increase mitochondrial autophagy. This is related to the inhibition of intracellular Bax/Bcl-2/Caspase-3 apoptosis pathway and regulation of Parkin/PINK1 mitochondrial autophagy pathway.
9.Textual Research on Key Information of Classic Formula Houpo Qiwutang and Its Ancient and Modern Applications
Jinlong ZHANG ; Wei CHEN ; Ruobing LI ; Baikun YIN ; Yaodong GU ; Jun LEI ; Xicheng JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):213-222
Houpo Qiwutang originated from the Synopsis of the Golden Chamber, and it consists of seven medicines: Magnoliae Officinalis Cortex, Rhei Radix et Rhizoma, Aurantii Fructus Immaturus, Cinnamomi Ramulus, Zingiberis Rhizoma Recens, Glycyrrhizae Radix et Rhizoma, and Jujubae Fructus. It is a basic formula for the treatment of abdominal fullness. Through the bibliometric method, the historical history, drug base, preparation and dosage, decoction method, and ancient and modern applications of Houpu Qiwu Tang were analyzed by means of textual research. The research finds that Houpu Qiwu Tang has been passed down through the generations in an orderly manner with fewer changes. The drug base of this formula is basically clear, and the base of Magnoliae Officinalis Cortex, Rhei Radix et Rhizoma, Cinnamomi Ramulus, Zingiberis Rhizoma Recens, and Jujubae Fructus is consistent with the 2020 edition of Chinese Pharmacopoeia. The mainstream base of Aurantii Fructus Immaturus is the dried young fruit of Citrus aurantium of Rutaceae family, and the historical mainstream base of Glycyrrhizae Radix et Rhizoma is the dried root of Glycyrrhiza uralensis of Leguminosae family. The modern dosage of this formula is 110.40 g of Magnoliae Officinalis Cortex, 41.40 g of Rhei Radix et Rhizoma, 69 g of Aurantii Fructus Immaturus, 27.60 g of Cinnamomi Ramulus, 69 g of Zingiberis Rhizoma Recens, 41.40 g of Glycyrrhizae Radix et Rhizoma, and 30 g of Jujubae Fructus. In addition, the decoction method is to add 2 000 mL of water with the above seven flavors of the medicine, boil it to 800 mL, and then take 160 mL in a warm state each time. The amount of the medicine taken for each time is 22.08 g of Magnoliae Officinalis Cortex, 8.28 g of Rhei Radix et Rhizoma, 13.80 g of Aurantii Fructus Immaturus, 5.52 g of Cinnamomi Ramulus, 13.80 g of Zingiberis Rhizoma Recens, 8.28 g of Glycyrrhizae Radix et Rhizoma, and 6 g of Jujubae Fructus. The modern application of this formula involves the digestive system, respiratory system, and urinary system. It is more advantageous in digestive system diseases such as early postoperative inflammatory bowel obstruction, functional dyspepsia, gastric pain, functional abdominal distension, and gastric reflux esophagitis. By comprehensively examining the key information of Houpu Qiwu Tang, this paper aims to provide literature support for the development and clinical application of this formula.
10.Syndrome Differentiation and Treatment of Atrial Fibrillation based on the Holistic View of "Spleen-Vessels-Heart-Spirit"
Yihang DU ; Chenglin DUAN ; Xueping ZHU ; Meng LYU ; Jiafan CHEN ; Yi WEI ; Yuanhui HU
Journal of Traditional Chinese Medicine 2025;66(1):89-92
Based on the holistic view of "spleen-vessels-heart-spirit" system, this article explores the pathogenesis and progression of atrial fibrillation. It is proposed that the onset of atrial fibrillation is due to failure of the spleen to transport and disharmony of blood vessels; phlegm and blood stasis obstructing the collaterals and damage to the heart structure are the basis of its pathogenesis; the unclear mind and disorder of body and spirit are the causes of its progression. Based on the characteristics of pathological changes in different stages of the disease, it is proposed that early treatment should focus on restoring the middle jiao, clearing and promoting blood vessels, using modified Yigong Powder (异功散); during the progression of the disease, treatment should remove blood stasis and phlegm, nourish heart and protect the pulse, using self-prescribed modified Mengshi Tongmai Decoction (礞石通脉汤); meanwhile, calming mind and stabilizing palpitations, and regulating spirit should be sequentially incorporated, with self-prescribed Jiazao Ningmai Decoction (甲枣宁脉汤) or Shenying Dingji Decoction (参英定悸汤) and modified as appropriate. Clinical treatment should focus on the whole disease course of atrial fibrillation, implementing stage-based treatments to enable early intervention and holistic regulation.


Result Analysis
Print
Save
E-mail