1.Severity Assessment Parameters and Diagnostic Technologies of Obstructive Sleep Apnea
Zhuo-Zhi FU ; Ya-Cen WU ; Mei-Xi LI ; Ping-Ping YIN ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(1):147-161
Obstructive sleep apnea (OSA) is an increasingly widespread sleep-breathing disordered disease, and is an independent risk factor for many high-risk chronic diseases such as hypertension, coronary heart disease, stroke, arrhythmias and diabetes, which is potentially fatal. The key to the prevention and treatment of OSA is early diagnosis and treatment, so the assessment and diagnostic technologies of OSA have become a research hotspot. This paper reviews the research progresses of severity assessment parameters and diagnostic technologies of OSA, and discusses their future development trends. In terms of severity assessment parameters of OSA, apnea hypopnea index (AHI), as the gold standard, together with the percentage of duration of apnea hypopnea (AH%), lowest oxygen saturation (LSpO2), heart rate variability (HRV), oxygen desaturation index (ODI) and the emerging biomarkers, constitute a multi-dimensional evaluation system. Specifically, the AHI, which measures the frequency of sleep respiratory events per hour, does not fully reflect the patients’ overall sleep quality or the extent of their daytime functional impairments. To address this limitation, the AH%, which measures the proportion of the entire sleep cycle affected by apneas and hypopneas, deepens our understanding of the impact on sleep quality. The LSpO2 plays a critical role in highlighting the potential severe hypoxic episodes during sleep, while the HRV offers a different perspective by analyzing the fluctuations in heart rate thereby revealing the activity of the autonomic nervous system. The ODI provides a direct and objective measure of patients’ nocturnal oxygenation stability by calculating the number of desaturation events per hour, and the biomarkers offers novel insights into the diagnosis and management of OSA, and fosters the development of more precise and tailored OSA therapeutic strategies. In terms of diagnostic techniques of OSA, the standardized questionnaire and Epworth sleepiness scale (ESS) is a simple and effective method for preliminary screening of OSA, and the polysomnography (PSG) which is based on recording multiple physiological signals stands for gold standard, but it has limitations of complex operations, high costs and inconvenience. As a convenient alternative, the home sleep apnea testing (HSAT) allows patients to monitor their sleep with simplified equipment in the comfort of their own homes, and the cardiopulmonary coupling (CPC) offers a minimal version that simply analyzes the electrocardiogram (ECG) signals. As an emerging diagnostic technology of OSA, machine learning (ML) and artificial intelligence (AI) adeptly pinpoint respiratory incidents and expose delicate physiological changes, thus casting new light on the diagnostic approach to OSA. In addition, imaging examination utilizes detailed visual representations of the airway’s structure and assists in recognizing structural abnormalities that may result in obstructed airways, while sound monitoring technology records and analyzes snoring and breathing sounds to detect the condition subtly, and thus further expands our medical diagnostic toolkit. As for the future development directions, it can be predicted that interdisciplinary integrated researches, the construction of personalized diagnosis and treatment models, and the popularization of high-tech in clinical applications will become the development trends in the field of OSA evaluation and diagnosis.
2.A Fitting Method for Photoacoustic Pump-probe Imaging Based on Phase Correction
Zhuo-Jun XIE ; Hong-Wen ZHONG ; Run-Xiang LIU ; Bo WANG ; Ping XUE ; Bin HE
Progress in Biochemistry and Biophysics 2025;52(2):525-532
ObjectivePhotoacoustic pump-probe imaging can effectively eliminate the interference of blood background signal in traditional photoacoustic imaging, and realize the imaging of weak phosphorescence molecules and their triplet lifetimes in deep tissues. However, background differential noise in photoacoustic pump-probe imaging often leads to large fitting results of phosphorescent molecule concentration and triplet lifetime. Therefore, this paper proposes a novel triplet lifetime fitting method for photoacoustic pump-probe imaging. By extracting the phase of the triplet differential signal and the background noise, the fitting bias caused by the background noise can be effectively corrected. MethodsThe advantages and feasibility of the proposed algorithm are verified by numerical simulation, phantom and in vivo experiments, respectively. ResultsIn the numerical simulation, under the condition of noise intensity being 10% of the signal amplitude, the new method can optimize the fitting deviation from 48.5% to about 5%, and has a higher exclusion coefficient (0.88>0.79), which greatly improves the fitting accuracy. The high specificity imaging ability of photoacoustic pump imaging for phosphorescent molecules has been demonstrated by phantom experiments. In vivo experiments have verified the feasibility of the new fitting method proposed in this paper for fitting phosphoometric lifetime to monitor oxygen partial pressure content during photodynamic therapy of tumors in nude mice. ConclusionThis work will play an important role in promoting the application of photoacoustic pump-probe imaging in biomedicine.
3.Analysis on Pharmacodynamic Material Basis and Mechanism of Famous Classical Formula Renshen Wuweizi Tang in Treatment of Spleen and Lung Qi Deficiency Syndrome
Shanshan LI ; Yute ZHONG ; Xiaomei XIANG ; Wei KANG ; Shufan ZHOU ; Ping WANG ; Haiyu XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):31-39
ObjectiveBased on ultra-high performance liquid chromatography-quadrupole-time-of-flight mass spectrometry(UPLC-Q-TOF-MS/MS), network pharmacology and molecular docking techniques, to explore the pharmacodynamic material basis and mechanism of Renshen Wuweizi Tang in treating spleen-lung Qi deficiency syndrome. MethodsThe chemical components in the decoction of Renshen Wuweizi Tang were systematically characterized and identified by UPLC-Q-TOF-MS/MS, and network pharmacology was used to screen potential active ingredients, collect component targets and gene sets related to spleen-lung Qi deficiency syndrome, and obtain protein interaction relationships through STRING. Cytoscape 3.9.1 was used to construct a "formula-syndrome" association network and calculate topological feature values. Gene ontology(GO) function and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed on core genes to explore potential pharmacodynamic links, the average shortest path between the formula-drug target network and the pharmacodynamic link gene network was calculated to discover dominant pharmacodynamic links, and MCODE plugin was used to identify core gene clusters from the dominant pharmacodynamic links, which were validated using Gene Expression Omnibus(GEO), and molecular docking was performed between key components and core targets. ResultsOne hundred and thirty-seven components were identified in the negative ion mode, and eighty components were identified in the positive ion mode. After deduplication, a total of 185 components were identified, mainly composed of triterpenoid saponins(49) and flavonoids(54). Based on the "formula-syndrome" correlation network analysis, energy metabolism was determined to be the dominant pharmacodynamic link of Renshen Wuweizi Tang in the treatment of spleen-lung Qi deficiency syndrome. The results of molecular docking showed that 7 components(adenosine, atractylenolide Ⅱ, atractylenolide Ⅲ, ginsenoside Rg1, glycyrrhizin B2, glycyrrhizin E2 and campesterol) from 4 medicinal materials(Ginseng Radix et Rhizoma, Atractylodis Macrocephalae Rhizoma, Glycyrrhizae Radix et Rhizoma and Poria) in this formula might regulate energy metabolism by acting on 6 targets, namely cyclic adenosine monophosphate-response element binding protein 1(CREB1), glyceraldehyde-3-phosphate dehydrogenase(GAPDH), interleukin(IL)-6, nuclear transcription factor(NF)-κB1, peroxisome proliferator-activated receptor α(PPARα), and tumor necrosis factor(TNF), thus improving the symptoms of diseases related to spleen-lung Qi deficiency syndrome. ConclusionThis study established a UPLC-Q-TOF-MS/MS for rapid characterization and identification of chemical components in the decoction of Renshen Wuweizi Tang, expanding the understanding of the material composition of this formula, and found that 7 components might act on the key advantageous pharmacodynamic link "energy metabolism" through 6 targets to improve the related symptoms of spleen-lung Qi deficiency syndrome. This can provide a reference for the subsequent exploration of the material benchmark and mechanism of the famous classical formula.
4.Study of adsorption of coated aldehyde oxy-starch on the indexes of renal failure
Qian WU ; Cai-fen WANG ; Ning-ning PENG ; Qin NIE ; Tian-fu LI ; Jian-yu LIU ; Xiang-yi SONG ; Jian LIU ; Su-ping WU ; Ji-wen ZHANG ; Li-xin SUN
Acta Pharmaceutica Sinica 2025;60(2):498-505
The accumulation of uremic toxins such as urea nitrogen, blood creatinine, and uric acid of patients with renal failure
5.Research progress on quality control methods for monitoring illicit drugs use in wastewater
Yue XIAO ; Shuai YUAN ; Ruxin LUO ; Ruiqin ZHU ; Bin DI ; Ping XIANG
Journal of China Pharmaceutical University 2025;56(2):139-147
The use of wastewater analysis, or wastewater-based epidemiology, to assess and monitor the situation of drug abuse is now widely used at home and abroad. However, there is currently a lack of effective evaluation methods and effective ways of comparison, supervision and standardization, which is not conducive to the analysis and comparisons of data in different countries and regions. Quality control techniques can control the laboratory's analytical errors, safeguard the consistency and comparability of identification conclusions, and promote the further improvement of the level and capacity of urban drug governance, thus playing significant roles. This paper provides an overview of sample collection, sample preservation and transportation, laboratory analysis, back-calculation of drug use and external laboratory quality control in the process of wastewater analysis, with a view to exploring more comprehensive scientific and objective methods and approaches suitable for examining and evaluating qualitative and quantitative analysis of drugs in wastewater among laboratories.
6.POU2F1 inhibits miR-29b1/a cluster-mediated suppression of PIK3R1 and PIK3R3 expression to regulate gastric cancer cell invasion and migration.
Yizhi XIAO ; Ping YANG ; Wushuang XIAO ; Zhen YU ; Jiaying LI ; Xiaofeng LI ; Jianjiao LIN ; Jieming ZHANG ; Miaomiao PEI ; Linjie HONG ; Juanying YANG ; Zhizhao LIN ; Ping JIANG ; Li XIANG ; Guoxin LI ; Xinbo AI ; Weiyu DAI ; Weimei TANG ; Jide WANG
Chinese Medical Journal 2025;138(7):838-850
BACKGROUND:
The transcription factor POU2F1 regulates the expression levels of microRNAs in neoplasia. However, the miR-29b1/a cluster modulated by POU2F1 in gastric cancer (GC) remains unknown.
METHODS:
Gene expression in GC cells was evaluated using reverse-transcription polymerase chain reaction (PCR), western blotting, immunohistochemistry, and RNA in situ hybridization. Co-immunoprecipitation was performed to evaluate protein interactions. Transwell migration and invasion assays were performed to investigate the biological behavior of GC cells. MiR-29b1/a cluster promoter analysis and luciferase activity assay for the 3'-UTR study were performed in GC cells. In vivo tumor metastasis was evaluated in nude mice.
RESULTS:
POU2F1 is overexpressed in GC cell lines and binds to the miR-29b1/a cluster promoter. POU2F1 is upregulated, whereas mature miR-29b-3p and miR-29a-3p are downregulated in GC tissues. POU2F1 promotes GC metastasis by inhibiting miR-29b-3p or miR-29a-3p expression in vitro and in vivo . Furthermore, PIK3R1 and/or PIK3R3 are direct targets of miR-29b-3p and/or miR-29a-3p , and the ectopic expression of PIK3R1 or PIK3R3 reverses the suppressive effect of mature miR-29b-3p and/or miR-29a-3p on GC cell metastasis and invasion. Additionally, the interaction of PIK3R1 with PIK3R3 promotes migration and invasion, and miR-29b-3p , miR-29a-3p , PIK3R1 , and PIK3R3 regulate migration and invasion via the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in GC cells. In addition, POU2F1 , PIK3R1 , and PIK3R3 expression levels negatively correlated with miR-29b-3p and miR-29a-3p expression levels in GC tissue samples.
CONCLUSIONS
The POU2F1 - miR-29b-3p / miR-29a-3p-PIK3R1 / PIK3R1 signaling axis regulates tumor progression and may be a promising therapeutic target for GC.
MicroRNAs/metabolism*
;
Humans
;
Stomach Neoplasms/pathology*
;
Cell Line, Tumor
;
Cell Movement/physiology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Animals
;
Mice
;
Octamer Transcription Factor-1/metabolism*
;
Mice, Nude
;
Class Ia Phosphatidylinositol 3-Kinase/metabolism*
;
Neoplasm Invasiveness
;
Gene Expression Regulation, Neoplastic/genetics*
;
Male
;
Immunohistochemistry
;
Female
8.The signature of the small intestinal epithelial and immune cells in health and diseases.
Xiang GAO ; Cuiping YANG ; Zhongsheng FENG ; Ping LIU ; Zhanju LIU
Chinese Medical Journal 2025;138(11):1288-1300
The small intestine is essential for digestion, nutrient absorption, immune regulation, and microbial balance. Its epithelial lining, containing specialized cells like Paneth cells and tuft cells, is crucial for maintaining intestinal homeostasis. Paneth cells produce antimicrobial peptides and growth factors that support microbial regulation and intestinal stem cells, while tuft cells act as chemosensors, detecting environmental changes and modulating immune responses. Along with immune cells such as intraepithelial lymphocytes, innate lymphoid cells, T cells, and macrophages, they form a strong defense system that protects the epithelial barrier. Disruptions in this balance contribute to chronic inflammation, microbial dysbiosis, and compromised barrier function-key features of inflammatory bowel disease, celiac disease, and metabolic syndromes. Furthermore, dysfunctions in the small intestine and immune cells are linked to systemic diseases like obesity, diabetes, and autoimmune disorders. Recent research highlights promising therapeutic strategies, including modulation of epithelial and immune cell functions, probiotics, and gene editing to restore gut health and address systemic effects. This review emphasizes the pivotal roles of small intestinal epithelia and immune cells in maintaining intestinal homeostasis, their involvement in disease development, and emerging treatments for intestinal and systemic disorders.
Humans
;
Intestinal Mucosa/cytology*
;
Intestine, Small/cytology*
;
Animals
;
Inflammatory Bowel Diseases/immunology*
;
Celiac Disease/immunology*
;
Paneth Cells/immunology*
9.Carbon footprint accounting of traditional Chinese medicine extracts based on life cycle assessment: a case study of mulberry leaf extract from an enterprise.
Zhi-Min CI ; Jian-Xiang OU ; Qiang YU ; Chuan ZHENG ; Zhao-Qing PEI ; Li-Ping QU ; Ming YANG ; Li HAN ; Ding-Kun ZHANG
China Journal of Chinese Materia Medica 2025;50(1):120-129
Under the background of carbon peaking and carbon neutrality goals, the Ministry of Ecology and Environment, together with 15 national ministries and commissions, has formulated the Implementation Plan on Establishing a Carbon Footprint Management System, and it is urgent for traditional Chinese medicine(TCM) pharmaceutical enterprises to carry out research on carbon footprint accounting methods of related products. Based on the life cycle assessment(LCA) theory, taking mulberry leaf extract produced by a certain enterprise as an example, this study analyzed the carbon footprint of TCM extracts during the life cycle. The results show that for every 1 kg of product produced, the carbon emissions from the stages of raw material acquisition, transportation, and extract production are-20.569, 1.205, and 173.577 kgCO_2eq(CO_2 equivalent), respectively. The carbon footprint of the product is 154.213 kgCO_2eq·kg~(-1). In addition, the carbon emission is the highest in the production stage, in which the consumption of ethanol solvents makes the greatest contribution to the carbon footprint, accounting for 25.71%, more than one-fourth of the total carbon footprint. The second contribution was from the treatment process of TCM residues, accounting for 19.67%, closely followed by wastewater treatment(17.71%), the consumption of hot steam(17.43%), and drinking water(16.90%). The consumption of electric power and packaging materials has a smaller carbon emission of 2.58%. In particular, the carbon emission caused by the consumption of packaging materials is only 0.04%, which is negligible. The results of the study are expected to provide a reference for TCM enterprises to carry out research on the carbon footprint of products, offer ideas for collaborative innovation in reducing pollution and carbon emissions throughout the entire industry chain of TCM, and develop new quality productivity of modern TCM industry based on green and low-carbon manufacturing.
Morus/chemistry*
;
Plant Leaves/chemistry*
;
Carbon Footprint
;
Drugs, Chinese Herbal/chemistry*
;
Plant Extracts/analysis*
;
Medicine, Chinese Traditional
10.Influence of iron metabolism on osteoporosis and modulating effect of traditional Chinese medicine.
Yi-Li ZHANG ; Bao-Yu QI ; Chuan-Rui SUN ; Xiang-Yun GUO ; Shuang-Jie YANG ; Ping LIU ; Xu WEI
China Journal of Chinese Materia Medica 2025;50(3):575-582
Recent studies have shown that an imbalance in iron metabolism can affect the composition and microstructural changes of bone, disrupting bone homeostasis and leading to osteoporosis(OP). The imbalance in iron metabolism, along with its induced local abnormal microenvironment and cellular iron death, has become a new focal point in OP research, drawing increasing attention from the academic community regarding the regulation of iron metabolism to prevent and manage OP. From the perspective of traditional Chinese medicine(TCM), iron metabolism imbalance has potential connections to TCM theories regarding internal organs, as well as treatments aimed at tonifying the kidney, strengthening the spleen, and activating blood circulation. Evidence is continually emerging that TCMs and effective components that tonify the kidney, strengthen the spleen, and activate blood circulation can prevent and manage OP by regulating iron metabolism. This article analyzes the relationship between iron and bone, as well as the effects of TCM formulations on improving iron metabolism and influencing bone metabolism, from the perspectives of iron metabolism mechanisms and TCM interventions, aiming to broaden existing clinical strategies for prevention and treatment and inject new momentum into the field of OP as it moves into a new era.
Osteoporosis/drug therapy*
;
Humans
;
Iron/metabolism*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Medicine, Chinese Traditional
;
Bone and Bones/drug effects*

Result Analysis
Print
Save
E-mail