1.Effect of Qingfei Shenshi Decoction (清肺渗湿汤) Combined with Western Medicine on Clinical Effectiveness and Immune Function for Patients with Bronchial Asthma of Heat Wheezing Syndrome
Ying SUN ; Haibo HU ; Na LIU ; Fengchan WANG ; Jinbao ZONG ; Ping HAN ; Peng LI ; Guojing ZHAO ; Haoran WANG ; Xuechao LU
Journal of Traditional Chinese Medicine 2026;67(1):38-44
ObjectiveTo observe the clinical effectiveness and safety of Qingfei Shenshi Decoction (清肺渗湿汤) combined with western medicine for patients with bronchial asthma of heat wheezing syndrome, and to explore its potential mechanism of action. MethodsEighty-six participants with bronchial asthma of heat wheezing syndrome were randomly divided into treatment group and control group, each group with 43 participants. The control group received conventional western medicine, and the treatment group was additionally administered Qingfei Shenshi Decoction orally on the basis of the control group, 1 dose per day. Both groups were treated for 14 days. The primary outcome measure was clinical effectiveness; secondary outcome measures included traditional Chinese medicine (TCM) syndrome score, asthma control test (ACT) score, pulmonary function indices such as forced expiratory volume in 1 second (FEV1), forced vital capacity (FVC), peak expiratory flow (PEF), serum inflammatory factor levels including interleukin-4 (IL-4), tumour necrosis factor-α (TNF-α), and high-sensitivity C-reactive protein (hs-CRP), and immune function indices including CD3+, CD4+, CD8+, CD4+/CD8+. All outcome measures were evaluated before and after treatment. Vital signs were monitored, and electrocardiography, blood routine, urine routine, liver function, and renal function tests were performed before and after treatment. Adverse events and reactions during the study were recorded. ResultsA total of 80 patients completed the trial with 40 in each group. The total clinical effective rate of the treatment group was 97.5% (39/40), which was significantly higher than that of the control group (85.0%, 34/40, P<0.05). After treatment, both groups showed decreased TCM syndrome scores, IL-4, TNF-α, hs-CRP, and CD8+ levels, as well as increased ACT scores, CD3+, CD4+, CD4+/CD8+, FEV1, FVC, and PEF levels (P<0.05 or P<0.01). Moreover, the improvements in these indices were more significant in the treatment group than in the control group (P<0.05 or P<0.01). No significant abnormalities in safety indicators were observed in either group, and no adverse events or reactions occurred. ConclusionQingfei Shenshi Decoction combined with conventional western medicine for patients with bronchial asthma of heat wheezing syndrome can effectively improve the clinical symptoms, pulmonary function, and clinical effectiveness, with good safety. Its mechanism may be related to reducing inflammatory factor levels and regulating T lymphocyte subsets to improve immune function.
2.Panax notoginseng saponins regulate differential miRNA expression in osteoclast exosomes and inhibit ferroptosis in osteoblasts
Hongcheng TAO ; Ping ZENG ; Jinfu LIU ; Zhao TIAN ; Qiang DING ; Chaohui LI ; Jianjie WEI ; Hao LI
Chinese Journal of Tissue Engineering Research 2025;29(19):4011-4021
BACKGROUND:Steroid-induced femoral head necrosis is mostly caused by long-term and extensive use of hormones,but its specific pathogenesis is not yet clear and needs further study. OBJECTIVE:To screen out the differential miRNAs in osteoclast exosomes after the intervention of Panax notoginseng saponins,and on this basis,to further construct an osteogenic-related ferroptosis regulatory network to explore the potential mechanism and research direction of steroid-induced osteonecrosis of the femoral head. METHODS:MTT assay was used to detect the toxic effects of different concentrations of dexamethasone and different mass concentrations of Panax notoginseng saponins on Raw264.7 cell line.Tartrate resistant acid phosphatase staining and TUNEL assay were used to detect the effects of Panax notoginseng saponins on osteoclast inhibition and apoptosis.Exosomes were extracted from cultured osteoclasts with Panax notoginseng saponins intervention.Exosomes from different groups were sequenced to identify differentially expressed miRNAs.CytoScape 3.9.1 was used to construct and visualize the regulatory network between differentially expressed miRNAs and mRNAs.Candidate mRNAs were screened by GO analysis and KEGG analysis.Finally,the differential genes related to ferroptosis were screened out,and the regulatory network of ferroptosis-related genes was constructed. RESULTS AND CONCLUSION:(1)The concentration of dexamethasone(0.1 μmol/L)and Panax notoginseng saponins(1 736.85 μg/mL)suitable for intervention of Raw264.7 cells was determined by MTT assay.(2)Panax notoginseng saponins had an inhibitory effect on osteoclasts and could promote their apoptosis.(3)Totally 20 differentially expressed miRNAs were identified from osteoclast-derived exosome samples,and 11 differentially expressed miRNAs related to osteogenesis were predicted by target mRNAs.The regulatory networks of 4 up-regulated differentially expressed miRNAs corresponding to 155 down-regulated candidate mRNAs and 7 down-regulated differentially expressed miRNAs corresponding to 238 up-regulated candidate mRNAs were constructed.(4)Twenty-four genes related to ferroptosis were screened out from the differential genes.Finally,12 networks were constructed(miR-98-5p/PTGS2,miR-23b-3p/PTGS2,miR-425-5p/TFRC,miR-133a-3p/TFRC,miR-185-5p/TFRC,miR-23b-3p/NFE2L2,miR-23b-3p/LAMP2,miR-98-5p/LAMP2,miR-182-5p/LAMP2,miR-182-5p/TLR4,miR-23b-3p/ZFP36,and miR-182-5p/ZFP36).These results indicate that Panax notoginseng saponins may regulate osteoblast ferroptosis by regulating the expression of miRNAs derived from osteoclast exosomes,thus providing a new idea for the study of the mechanism of steroid-induced femoral head necrosis.
3.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
4.Exploring the Correlation between Pyroptosis and Immune Microenvironment Dysregulation in Rheumatoid Arthritis from the Perspective of "Ying Decline and Wei Attack"
Yancun LI ; Shu ZHU ; Yuhan WANG ; Yuan QU ; Yuan LIU ; Ping JIANG
Journal of Traditional Chinese Medicine 2025;66(5):464-467
As a complex autoimmune disease, rheumatoid arthritis (RA) involves immune microenvironment dysregulation resulting from excessive activation of pyroptosis, which is a crucial factor in disease progression. Based on the theory of ying-wei in traditional Chinese medicine, "ying decline and wei attack" is considered the fundamental pathogenesis of RA. Pyroptosis serves as a microscopic manifestation of this concept, suggesting a potential correlation between "ying decline and wei attack" and pyroptosis nd immune microenvironment dysregulation in RA. Accordingly, treatment principles based on this theory are proposed: in the early stage of the disease, boosting wei to consolidate the exterior, and regulating ying to dispel pathogens; in the middle and late stages, harmonizing ying to remove stagnation, and nourishing its transformational source.
5.Brain Aperiodic Dynamics
Zhi-Cai HU ; Zhen ZHANG ; Jiang WANG ; Gui-Ping LI ; Shan LIU ; Hai-Tao YU
Progress in Biochemistry and Biophysics 2025;52(1):99-118
Brain’s neural activities encompass both periodic rhythmic oscillations and aperiodic neural fluctuations. Rhythmic oscillations manifest as spectral peaks of neural signals, directly reflecting the synchronized activities of neural populations and closely tied to cognitive and behavioral states. In contrast, aperiodic fluctuations exhibit a power-law decaying spectral trend, revealing the multiscale dynamics of brain neural activity. In recent years, researchers have made notable progress in studying brain aperiodic dynamics. These studies demonstrate that aperiodic activity holds significant physiological relevance, correlating with various physiological states such as external stimuli, drug induction, sleep states, and aging. Aperiodic activity serves as a reflection of the brain’s sensory capacity, consciousness level, and cognitive ability. In clinical research, the aperiodic exponent has emerged as a significant potential biomarker, capable of reflecting the progression and trends of brain diseases while being intricately intertwined with the excitation-inhibition balance of neural system. The physiological mechanisms underlying aperiodic dynamics span multiple neural scales, with activities at the levels of individual neurons, neuronal ensembles, and neural networks collectively influencing the frequency, oscillatory patterns, and spatiotemporal characteristics of aperiodic signals. Aperiodic dynamics currently boasts broad application prospects. It not only provides a novel perspective for investigating brain neural dynamics but also holds immense potential as a neural marker in neuromodulation or brain-computer interface technologies. This paper summarizes methods for extracting characteristic parameters of aperiodic activity, analyzes its physiological relevance and potential as a biomarker in brain diseases, summarizes its physiological mechanisms, and based on these findings, elaborates on the research prospects of aperiodic dynamics.
6.Effect of Baduanjin on mood and sleep quality in patients with mild to moderate Parkinson disease
Qian LI ; Huimiao LIU ; Ping GU
Journal of Apoplexy and Nervous Diseases 2025;42(3):200-203
Objective To investigate the effect of Baduanjin on mood and sleep quality in patients with mild to moderate Parkinson disease (PD) and related mechanisms. Methods A total of 110 patients with Hoehn-Yahr stage 1-3 stable PD were randomly divided into Baduanjin group and control group, with 55 patients in each group. The patients in the Baduanjin group received Baduanjin exercise for 30 minutes each time, 5 days a week for 12 weeks, and those in the control group did not do any exercise. Motor function, anxiety and depression mood, and sleep quality were assessed before exercise and after exercise for 12 weeks. Results Compared with the control group, the Baduanjin group had significant improvements in UPDRS-Ⅲ score and 6-minute walk test results. There was a significant difference in Berg Balance Scale in terms of the interaction between time and intervention. There were significant differences between the two groups in HAMA14,HAMD24,and PSQI scores. Conclusions Baduanjin can improve mood and sleep quality in patients with mild to moderate PD.
Parkinson Disease
;
Anxiety
;
Depression
7.Exploring Regulatory Effect of Kaixuan Jiedu Core Prescription on SPHK2/S1P/MCP-1 Pathway in Psoriasis-like Mouse Model Based on Sphingolipid Metabolism
Yeping QIN ; Wenhui LIU ; Dan DAI ; Jia XU ; Chong LI ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):60-68
ObjectiveTo explore the effects of Kaixuan Jiedu core prescription (KXJD) on sphingolipid metabolism in the mouse model of imiquimod-induced psoriasis-like skin lesions. MethodsThirty-seven male C57BL/6J mice were randomly assigned into five groups: healthy control (n=11), model (n=11), methotrexate (MTX, n=5), low-dose (15.21 g·kg-1) KXJD (n=5), and high-dose (30.42 g·kg-1) KXJD (n=5). Psoriasis-like skin lesions were induced in mice with 62.5 mg 5% imiquimod cream applied on the back. The KXJD groups and MTX group were treated with 0.2 mL corresponding decoction and MTX, respectively, by gavage daily, while the other groups were given an equal volume of normal saline by the same way. After 5 days of treatment, back skin lesions were collected. Firstly, healthy control and model mice were selected for tandem mass tag (TMT) quantitative proteomics (control vs model=3 vs 3) and targeted lipid metabolomics (control vs model=11 vs 11). Then, the binding degree between core components and target proteins was predicted via network pharmacology and molecular docking. Finally, an animal experiment was performed to decipher the specific regulation mechanism of KXJD on sphingolipid metabolism. Immunohistochemistry was employed to determine the expression level of sphingosine-1-phosphate (S1P), and Western blot was employed to determine the expression levels of sphingosine kinase 2 (SPHK2) and monocyte chemotactic protein-1 (MCP-1). ResultsTMT proteomics and targeted lipid metabolomics suggested that sphingolipid metabolism was active in the psoriatic skin, and key proteases [serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), SPHK2, delta(4)-desaturase sphingolipid 1 (Degs1), and ceramide synthase 4 (CerS4)] and 8 sphingolipid metabolites (including ceramides, sphingol, sphingomyelin, and glycosphingolipid) expressed abnormally (P<0.05) compared with those in the healthy skin. The molecular docking results indicated that the binding energy between the active components (quercetin, kaempferol, and luteolin) in KXJD and key proteins involved in sphingolipid metabolism was less than-8 kal·mol-1. Further experimental verification showed elevated expression levels of SPHK2, S1P, and MCP-1 in psoriatic skin compared with healthy skin (P<0.05), and KXJD down-regulated the expression levels of SPHK2, S1P, and MCP-1 compared with the model group (P<0.05). ConclusionThis study indicates that there is an imbalance in sphingolipid metabolism in psoriatic skin lesions. KXJD may reduce psoriasis-like lesions in mice by regulating sphingolipid metabolism via the SPHK2/S1P/MCP-1 pathway.
8.Kaixuan Jiedu Compatibility Alleviates Skin Lesions and Inflammatory Reactions in Psoriasis-like Mice
Ningxin ZHANG ; Jiaqi LI ; Xinqian LIU ; Tianbo ZHANG ; Meiqi SUN ; Mingjing LI ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):79-88
ObjectiveTo investigate the efficacy and safety of Kaixuan Jiedu compatibility and the decomposed prescriptions in the treatment of psoriasis. MethodsThirty Balb/c mice were randomly grouped as follows (n=6): normal, model, Kaixuan Jiedu (KXJD, 15.21 g·kg-1), Kaixuan (KX, 3.08 g·kg-1), and Jiedu (JD, 12.13 g·kg-1). Except the normal group, the rest groups were modeled for psoriasis-like skin lesions by topical application of imiquimod, and samples were collected after 7 days of continuous intervention. Mice were photographed at the lesion site during modeling and before sampling and the psoriasis area and severity index (PASI) was calculated. Hematoxylin-eosin (HE) staining was used to observe pathological changes in the lesions and measure the epidermal thickness. Mice were photographed and observed for the tortuous dilation of dermal capillaries. The expression of vascular endothelial growth factor (VEGF), platelet-endothelial cell adhesion molecule (CD31), proliferating cell nuclear antigen (Ki67), and cytokeratin 10 (CK10) in the epidermal tissue was detected by immunohistochemistry. Immunofluorescence assay was employed to determine the expression of Claudin-1 and Occludin. Real-time PCR was employed to determine the mRNA levels of interleukin-17A (IL-17A) and interleukin-23 (IL-23). The spleen and thymus were photographed and weighed, and the spleen and thymus indices were calculated. The safety of the treatment was assessed by automatic biochemistry testing of the serum, liver, and kidney functions and by HE staining of the liver, kidney and spleen. ResultsCompared with that of the normal group, the skin of the model group showed erythema, infiltration, and typical psoriasis-like changes, tortuous dilation of dermal capillaries, hyperkeratosis in epidermal cells, acanthosis, massive lymphocytic infiltration in the dermis, impaired barrier function, increased expression of VEGF, CD31, Ki67, and CK10 (P<0.01), reduced expression of Claudin-1 and Occludin (P<0.01) in the epidermis, and up-regulated mRNA levels of IL-17A and IL-23 (P<0.01). In addition, the mice in the model group showed spleen enlargement, thymus atrophy, increased spleen index, and decreased thymus index (P<0.01). Compared with the model group, KXJD and JD reduced psoriasis-like skin lesions, inhibited the tortuous dilation of dermal capillaries, reduced the expression of VEGF, CD31, Ki67, and CK10 (P<0.01), increased the expression of claudin-1 (P<0.01), and down-regulated the mRNA levels of inflammatory factors (P<0.01). Moreover, the KXJD group outperformed the JD group. The JD group showed no significant difference from the model group regarding the spleen index, thymus index, and Occludin expression. The psoriasis indicators in the KX group were not significantly different from those in the model group. ConclusionKXJD and JD can reduce the symptoms of local skin lesions of psoriasis, which is manifested as different inhibition degrees of the proliferation and differentiation of keratin-forming cells, tortuous dilation of dermal capillaries, and inflammatory reactions, as well as the protection of the skin barrier. Moreover, KXJD outperformed JD. KX alone did not significantly reduce psoriasis lesions in mice. KXJD and the decomposed prescriptions are safe and effective, causing no obvious liver and kidney injuries.
9.Exploring Regulatory Effect of Kaixuan Jiedu Core Prescription on SPHK2/S1P/MCP-1 Pathway in Psoriasis-like Mouse Model Based on Sphingolipid Metabolism
Yeping QIN ; Wenhui LIU ; Dan DAI ; Jia XU ; Chong LI ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):60-68
ObjectiveTo explore the effects of Kaixuan Jiedu core prescription (KXJD) on sphingolipid metabolism in the mouse model of imiquimod-induced psoriasis-like skin lesions. MethodsThirty-seven male C57BL/6J mice were randomly assigned into five groups: healthy control (n=11), model (n=11), methotrexate (MTX, n=5), low-dose (15.21 g·kg-1) KXJD (n=5), and high-dose (30.42 g·kg-1) KXJD (n=5). Psoriasis-like skin lesions were induced in mice with 62.5 mg 5% imiquimod cream applied on the back. The KXJD groups and MTX group were treated with 0.2 mL corresponding decoction and MTX, respectively, by gavage daily, while the other groups were given an equal volume of normal saline by the same way. After 5 days of treatment, back skin lesions were collected. Firstly, healthy control and model mice were selected for tandem mass tag (TMT) quantitative proteomics (control vs model=3 vs 3) and targeted lipid metabolomics (control vs model=11 vs 11). Then, the binding degree between core components and target proteins was predicted via network pharmacology and molecular docking. Finally, an animal experiment was performed to decipher the specific regulation mechanism of KXJD on sphingolipid metabolism. Immunohistochemistry was employed to determine the expression level of sphingosine-1-phosphate (S1P), and Western blot was employed to determine the expression levels of sphingosine kinase 2 (SPHK2) and monocyte chemotactic protein-1 (MCP-1). ResultsTMT proteomics and targeted lipid metabolomics suggested that sphingolipid metabolism was active in the psoriatic skin, and key proteases [serine palmitoyltransferase, long chain base subunit 2 (SPTLC2), SPHK2, delta(4)-desaturase sphingolipid 1 (Degs1), and ceramide synthase 4 (CerS4)] and 8 sphingolipid metabolites (including ceramides, sphingol, sphingomyelin, and glycosphingolipid) expressed abnormally (P<0.05) compared with those in the healthy skin. The molecular docking results indicated that the binding energy between the active components (quercetin, kaempferol, and luteolin) in KXJD and key proteins involved in sphingolipid metabolism was less than-8 kal·mol-1. Further experimental verification showed elevated expression levels of SPHK2, S1P, and MCP-1 in psoriatic skin compared with healthy skin (P<0.05), and KXJD down-regulated the expression levels of SPHK2, S1P, and MCP-1 compared with the model group (P<0.05). ConclusionThis study indicates that there is an imbalance in sphingolipid metabolism in psoriatic skin lesions. KXJD may reduce psoriasis-like lesions in mice by regulating sphingolipid metabolism via the SPHK2/S1P/MCP-1 pathway.
10.Kaixuan Jiedu Compatibility Alleviates Skin Lesions and Inflammatory Reactions in Psoriasis-like Mice
Ningxin ZHANG ; Jiaqi LI ; Xinqian LIU ; Tianbo ZHANG ; Meiqi SUN ; Mingjing LI ; Bin YANG ; Ping SONG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):79-88
ObjectiveTo investigate the efficacy and safety of Kaixuan Jiedu compatibility and the decomposed prescriptions in the treatment of psoriasis. MethodsThirty Balb/c mice were randomly grouped as follows (n=6): normal, model, Kaixuan Jiedu (KXJD, 15.21 g·kg-1), Kaixuan (KX, 3.08 g·kg-1), and Jiedu (JD, 12.13 g·kg-1). Except the normal group, the rest groups were modeled for psoriasis-like skin lesions by topical application of imiquimod, and samples were collected after 7 days of continuous intervention. Mice were photographed at the lesion site during modeling and before sampling and the psoriasis area and severity index (PASI) was calculated. Hematoxylin-eosin (HE) staining was used to observe pathological changes in the lesions and measure the epidermal thickness. Mice were photographed and observed for the tortuous dilation of dermal capillaries. The expression of vascular endothelial growth factor (VEGF), platelet-endothelial cell adhesion molecule (CD31), proliferating cell nuclear antigen (Ki67), and cytokeratin 10 (CK10) in the epidermal tissue was detected by immunohistochemistry. Immunofluorescence assay was employed to determine the expression of Claudin-1 and Occludin. Real-time PCR was employed to determine the mRNA levels of interleukin-17A (IL-17A) and interleukin-23 (IL-23). The spleen and thymus were photographed and weighed, and the spleen and thymus indices were calculated. The safety of the treatment was assessed by automatic biochemistry testing of the serum, liver, and kidney functions and by HE staining of the liver, kidney and spleen. ResultsCompared with that of the normal group, the skin of the model group showed erythema, infiltration, and typical psoriasis-like changes, tortuous dilation of dermal capillaries, hyperkeratosis in epidermal cells, acanthosis, massive lymphocytic infiltration in the dermis, impaired barrier function, increased expression of VEGF, CD31, Ki67, and CK10 (P<0.01), reduced expression of Claudin-1 and Occludin (P<0.01) in the epidermis, and up-regulated mRNA levels of IL-17A and IL-23 (P<0.01). In addition, the mice in the model group showed spleen enlargement, thymus atrophy, increased spleen index, and decreased thymus index (P<0.01). Compared with the model group, KXJD and JD reduced psoriasis-like skin lesions, inhibited the tortuous dilation of dermal capillaries, reduced the expression of VEGF, CD31, Ki67, and CK10 (P<0.01), increased the expression of claudin-1 (P<0.01), and down-regulated the mRNA levels of inflammatory factors (P<0.01). Moreover, the KXJD group outperformed the JD group. The JD group showed no significant difference from the model group regarding the spleen index, thymus index, and Occludin expression. The psoriasis indicators in the KX group were not significantly different from those in the model group. ConclusionKXJD and JD can reduce the symptoms of local skin lesions of psoriasis, which is manifested as different inhibition degrees of the proliferation and differentiation of keratin-forming cells, tortuous dilation of dermal capillaries, and inflammatory reactions, as well as the protection of the skin barrier. Moreover, KXJD outperformed JD. KX alone did not significantly reduce psoriasis lesions in mice. KXJD and the decomposed prescriptions are safe and effective, causing no obvious liver and kidney injuries.

Result Analysis
Print
Save
E-mail