1.Effect Analysis of Different Interventions to Improve Neuroinflammation in The Treatment of Alzheimer’s Disease
Jiang-Hui SHAN ; Chao-Yang CHU ; Shi-Yu CHEN ; Zhi-Cheng LIN ; Yu-Yu ZHOU ; Tian-Yuan FANG ; Chu-Xia ZHANG ; Biao XIAO ; Kai XIE ; Qing-Juan WANG ; Zhi-Tao LIU ; Li-Ping LI
Progress in Biochemistry and Biophysics 2025;52(2):310-333
Alzheimer’s disease (AD) is a central neurodegenerative disease characterized by progressive cognitive decline and memory impairment in clinical. Currently, there are no effective treatments for AD. In recent years, a variety of therapeutic approaches from different perspectives have been explored to treat AD. Although the drug therapies targeted at the clearance of amyloid β-protein (Aβ) had made a breakthrough in clinical trials, there were associated with adverse events. Neuroinflammation plays a crucial role in the onset and progression of AD. Continuous neuroinflammatory was considered to be the third major pathological feature of AD, which could promote the formation of extracellular amyloid plaques and intracellular neurofibrillary tangles. At the same time, these toxic substances could accelerate the development of neuroinflammation, form a vicious cycle, and exacerbate disease progression. Reducing neuroinflammation could break the feedback loop pattern between neuroinflammation, Aβ plaque deposition and Tau tangles, which might be an effective therapeutic strategy for treating AD. Traditional Chinese herbs such as Polygonum multiflorum and Curcuma were utilized in the treatment of AD due to their ability to mitigate neuroinflammation. Non-steroidal anti-inflammatory drugs such as ibuprofen and indomethacin had been shown to reduce the level of inflammasomes in the body, and taking these drugs was associated with a low incidence of AD. Biosynthetic nanomaterials loaded with oxytocin were demonstrated to have the capability to anti-inflammatory and penetrate the blood-brain barrier effectively, and they played an anti-inflammatory role via sustained-releasing oxytocin in the brain. Transplantation of mesenchymal stem cells could reduce neuroinflammation and inhibit the activation of microglia. The secretion of mesenchymal stem cells could not only improve neuroinflammation, but also exert a multi-target comprehensive therapeutic effect, making it potentially more suitable for the treatment of AD. Enhancing the level of TREM2 in microglial cells using gene editing technologies, or application of TREM2 antibodies such as Ab-T1, hT2AB could improve microglial cell function and reduce the level of neuroinflammation, which might be a potential treatment for AD. Probiotic therapy, fecal flora transplantation, antibiotic therapy, and dietary intervention could reshape the composition of the gut microbiota and alleviate neuroinflammation through the gut-brain axis. However, the drugs of sodium oligomannose remain controversial. Both exercise intervention and electromagnetic intervention had the potential to attenuate neuroinflammation, thereby delaying AD process. This article focuses on the role of drug therapy, gene therapy, stem cell therapy, gut microbiota therapy, exercise intervention, and brain stimulation in improving neuroinflammation in recent years, aiming to provide a novel insight for the treatment of AD by intervening neuroinflammation in the future.
2.Translational Research of Electromagnetic Fields on Diseases Related With Bone Remodeling: Review and Prospects
Peng SHANG ; Jun-Yu LIU ; Sheng-Hang WANG ; Jian-Cheng YANG ; Zhe-Yuan ZHANG ; An-Lin LI ; Hao ZHANG ; Yu-Hong ZENG
Progress in Biochemistry and Biophysics 2025;52(2):439-455
Electromagnetic fields can regulate the fundamental biological processes involved in bone remodeling. As a non-invasive physical therapy, electromagnetic fields with specific parameters have demonstrated therapeutic effects on bone remodeling diseases, such as fractures and osteoporosis. Electromagnetic fields can be generated by the movement of charged particles or induced by varying currents. Based on whether the strength and direction of the electric field change over time, electromagnetic fields can be classified into static and time-varying fields. The treatment of bone remodeling diseases with static magnetic fields primarily focuses on fractures, often using magnetic splints to immobilize the fracture site while studying the effects of static magnetic fields on bone healing. However, there has been relatively little research on the prevention and treatment of osteoporosis using static magnetic fields. Pulsed electromagnetic fields, a type of time-varying field, have been widely used in clinical studies for treating fractures, osteoporosis, and non-union. However, current clinical applications are limited to low-frequency, and research on the relationship between frequency and biological effects remains insufficient. We believe that different types of electromagnetic fields acting on bone can induce various “secondary physical quantities”, such as magnetism, force, electricity, acoustics, and thermal energy, which can stimulate bone cells either individually or simultaneously. Bone cells possess specific electromagnetic properties, and in a static magnetic field, the presence of a magnetic field gradient can exert a certain magnetism on the bone tissue, leading to observable effects. In a time-varying magnetic field, the charged particles within the bone experience varying Lorentz forces, causing vibrations and generating acoustic effects. Additionally, as the frequency of the time-varying field increases, induced currents or potentials can be generated within the bone, leading to electrical effects. When the frequency and power exceed a certain threshold, electromagnetic energy can be converted into thermal energy, producing thermal effects. In summary, external electromagnetic fields with different characteristics can generate multiple physical quantities within biological tissues, such as magnetic, electric, mechanical, acoustic, and thermal effects. These physical quantities may also interact and couple with each other, stimulating the biological tissues in a combined or composite manner, thereby producing biological effects. This understanding is key to elucidating the electromagnetic mechanisms of how electromagnetic fields influence biological tissues. In the study of electromagnetic fields for bone remodeling diseases, attention should be paid to the biological effects of bone remodeling under different electromagnetic wave characteristics. This includes exploring innovative electromagnetic source technologies applicable to bone remodeling, identifying safe and effective electromagnetic field parameters, and combining basic research with technological invention to develop scientifically grounded, advanced key technologies for innovative electromagnetic treatment devices targeting bone remodeling diseases. In conclusion, electromagnetic fields and multiple physical factors have the potential to prevent and treat bone remodeling diseases, and have significant application prospects.
3.Progress in the study of anti-inflammatory active components with anti-inflammatory effects and mechanisms in Caragana Fabr.
Yu-mei MA ; Ju-yuan LUO ; Tao CHEN ; Hong-mei LI ; Cheng SHEN ; Shuo WANG ; Zhi-bo SONG ; Yu-lin LI
Acta Pharmaceutica Sinica 2025;60(1):58-71
The plants of the genus
4.Eucommia ulmoides promotes alveolar bone formation in ovariectomized rats
Lin ZHENG ; Wenjun JIN ; Shanshan LUO ; Rui HUANG ; Jie WANG ; Yuting CHENG ; Zheqing AN ; Yue XIONG ; Zipeng GONG ; Jian LIAO
Chinese Journal of Tissue Engineering Research 2025;29(6):1159-1167
BACKGROUND:Eucommia ulmoides has a certain osteogenic effect,which can promote the proliferation and differentiation of osteoblasts.However,it is unclear whether Eucommia ulmoides has effects on alveolar bone formation and Wnt/β-Catenin signaling pathway. OBJECTIVE:To investigate the mechanism by which Eucommia ulmoides promotes alveolar bone formation in ovariectomized rats based on the Wnt/β-Catenin signaling pathway. METHODS:Sixty female Sprague-Dawley rats were selected and randomly divided into five groups:blank control group,sham-operation group,model group,low-dose group Eucommia ulmoides group,and high-dose Eucommia ulmoides group,with twelve rats in each group.Osteoporosis animal models were constructed by bilateral oophorectomy in the model group and the low-dose and high-dose Eucommia ulmoides groups.The sham-operation group underwent the same method to remove adipose tissue of equal mass around the bilateral ovaries.Three months after surgery,the low-and high-dose Eucommia ulmoides groups were given 2.1 g/kg/d and 4.2 g/kg/d Eucommia ulmoides by gavage,respectively.The sham-operation group and model group were given the same amount of physiological saline by gavage.After 12 weeks of drug intervention,the changes in alveolar bone mass of rats in each group were observed through Micro-CT;hematoxylin-eosin staining was used to observe the pathological structural changes of alveolar bone in rats;enzyme linked immunosorbent assay was used to detect the expression levels of alkaline phosphatase and osteocalcin in the serum of rats;western blot was used to detect the expression levels of β-Catenin and Frizzled9 receptor proteins in the alveolar bone of rats;and real-time fluorescence quantitative PCR was used to detect the expression of osteocalcin,Runt-related transcription factor 2(Runx2),alkaline phosphatase,β-catenin,and frizzled9 mRNAs in alveolar bone tissues of rats. RESULTS AND CONCLUSION:Compared with the blank control group,bone volume fraction,trabecular number,trabecular thickness,and bone mineral density were reduced in the model group(P<0.05),and trabecular separation was elevated(P<0.05).Pathological observation showed that the arrangement of trabeculae was disordered and irregular,the trabeculae were thinned or broken,and the marrow cavity was enlarged in the model group,with a significant reduction in bone volume;the level of alkaline phosphatase in the serum was increased(P<0.05),and the level of osteocalcin was decreased(P<0.05);mRNA expression of alkaline phosphatase,osteocalcin,Runx2,β-catenin,and frizzled9 were decreased(P<0.05);protein expression of β-Catenin and Frizzled9 was decreased(P<0.05).Compared with the model group,the low-and high-dose Eucommia ulmoides groups showed an increase in bone volume fraction,trabecular number,trabecular thickness,and bone mineral density(P<0.05)and a decrease in trabecular separation(P<0.05).In the low-and high-dose Eucommia ulmoides groups,bone trabeculae were slightly aligned and thickened,with a significant increase in bone mass.Compared with the model group,the serum level of alkaline phosphatase was reduced(P<0.05)and the serum level of osteocalcin was elevated(P<0.05)in the low-and high-dose Eucommia ulmoides groups.Compared with the model group,the mRNA expression of alkaline phosphatase,osteocalcin,Runx2,β-catenin,and frizzled9 were increased in the low-and high-dose Eucommia ulmoides groups(P<0.05).Compared with the model group,the protein expression of Frizzled9 was increased in the low-dose Eucommia ulmoides group(P<0.05),while the protein expression of β-Catenin and Frizzled9 was increased in the high-dose Eucommia ulmoides group(P<0.05).Compared with the low-dose Eucommia ulmoides group,the high-dose Eucommia ulmoides group had a more significant improvement in the above indexes.To conclude,Eucommia ulmoides can effectively promote the alveolar bone formation,and its mechanism of action might be related to the activation of the Wnt/β-catenin signaling pathway.
5.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
6.Longitudinal Association of Changes in Metabolic Syndrome with Cognitive Function: 12-Year Follow-up of the Guangzhou Biobank Cohort Study
Yu Meng TIAN ; Wei Sen ZHANG ; Chao Qiang JIANG ; Feng ZHU ; Ya Li JIN ; Shiu Lun Au YEUNG ; Jiao WANG ; Kar Keung CHENG ; Tai Hing LAM ; Lin XU
Diabetes & Metabolism Journal 2025;49(1):60-79
Background:
The association of changes in metabolic syndrome (MetS) with cognitive function remains unclear. We explored this association using prospective and Mendelian randomization (MR) studies.
Methods:
MetS components including high-density lipoprotein cholesterol (HDL-C), systolic blood pressure (SBP), waist circumference (WC), fasting plasma glucose (FPG), and triglycerides were measured at baseline and two follow-ups, constructing a MetS index. Immediate, delayed memory recall, and cognitive function along with its dimensions were assessed by immediate 10- word recall test (IWRT) and delayed 10-word recall test (DWRT), and mini-mental state examination (MMSE), respectively, at baseline and follow-ups. Linear mixed-effect model was used. Additionally, the genome-wide association study (GWAS) of MetS was conducted and one-sample MR was performed to assess the causality between MetS and cognitive function.
Results:
Elevated MetS index was associated with decreasing annual change rates (decrease) in DWRT and MMSE scores, and with decreases in attention, calculation and recall dimensions. HDL-C was positively associated with an increase in DWRT scores, while SBP and FPG were negatively associated. HDL-C showed a positive association, whereas WC was negatively associated with increases in MMSE scores, including attention, calculation and recall dimensions. Interaction analysis indicated that the association of MetS index on cognitive decline was predominantly observed in low family income group. The GWAS of MetS identified some genetic variants. MR results showed a non-significant causality between MetS and decrease in DWRT, IWRT, nor MMSE scores.
Conclusion
Our study indicated a significant association of MetS and its components with declines in memory and cognitive function, especially in delayed memory recall.
7.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
8.Exercise Regulates Structural Plasticity and Neurogenesis of Hippocampal Neurons and Improves Memory Impairment in High-fat Diet-induced Obese Mice
Meng-Si YAN ; Lin-Jie SHU ; Chao-Ge WANG ; Ran CHENG ; Lian-Wei MU ; Jing-Wen LIAO
Progress in Biochemistry and Biophysics 2025;52(4):995-1007
ObjectiveObesity has been identified as one of the most important risk factors for cognitive dysfunction. Physical exercise can ameliorate learning and memory deficits by reversing synaptic plasticity in the hippocampus and cortex in diseases such as Alzheimer’s disease. In this study, we aimed to determine whether 8 weeks of treadmill exercise could alleviate hippocampus-dependent memory impairment in high-fat diet-induced obese mice and investigate the potential mechanisms involved. MethodsA total of sixty 6-week-old male C57BL/6 mice, weighing between 20-30 g, were randomly assigned to 3 distinct groups, each consisting of 20 mice. The groups were designated as follows: control (CON), high-fat diet (HFD), and high-fat diet with exercise (HFD-Ex). Prior to the initiation of the treadmill exercise protocol, the HFD and HFD-Ex groups were fed a high-fat diet (60% fat by kcal) for 20 weeks. The mice in the HFD-Ex group underwent treadmill exercise at a speed of 8 m/min for the first 10 min, followed by 12 m/min for the subsequent 50 min, totally 60 min of exercise at a 0° slope, 5 d per week, for 8 weeks. We employed Y-maze and novel object recognition tests to assess hippocampus-dependent memory and utilized immunofluorescence, Western blot, Golgi staining, and ELISA to analyze axon length, dendritic complexity, number of spines, the expression of c-fos, doublecortin (DCX), postsynaptic density-95 (PSD95), synaptophysin (Syn), interleukin-1β (IL-1β), and the number of major histocompatibility complex II (MHC-II) positive cells. ResultsMice with HFD-induced obesity exhibit hippocampus-dependent memory impairment, and treadmill exercise can prevent memory decline in these mice. The expression of DCX was significantly decreased in the HFD-induced obese mice compared to the control group (P<0.001). Treadmill exercise increased the expression of c-fos (P<0.001) and DCX (P=0.001) in the hippocampus of the HFD-induced obese mice. The axon length (P<0.001), dendritic complexity (P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P<0.001) in the hippocampus were significantly decreased in the HFD-induced obese mice compared to the control group. Treadmill exercise increased the axon length (P=0.002), dendritic complexity(P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P=0.001) of the hippocampus in the HFD-induced obese mice. Our study found a significant increase in MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of HFD-induced obese mice compared to the control group. Treadmill exercise was found to reduce the number of MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of obese mice induced by a HFD. ConclusionTreadmill exercise led to enhanced neurogenesis and neuroplasticity by increasing the axon length, dendritic complexity, dendritic spine numbers, and the expression of PSD95 and DCX, decreasing the number of MHC-II positive cells and neuroinflammation in HFD-induced obese mice. Therefore, we speculate that exercise may serve as a non-pharmacologic method that protects against HFD-induced hippocampus-dependent memory dysfunction by enhancing neuroplasticity and neurogenesis in the hippocampus of obese mice.
9.The mechanism of effective traditional Chinese medicine components and prescriptions in treatment of chronic pancreatitis by intervening against pancreatic stellate cells
Ruyang CHENG ; Weining SONG ; Xin JIANG ; Yehao WANG ; Lin LIU ; Fang LU ; Shumin LIU
Journal of Clinical Hepatology 2025;41(4):793-800
Chronic pancreatitis (CP) is a chronic disease characterized by recurrent inflammation and progressive damage to pancreatic tissue, and its deterioration may increase the risk of pancreatic cancer in patients with CP, which seriously threatens the health of patients with CP. In recent years, studies on the pathogenesis of CP have mostly focused on the activation of pancreatic stellate cells (PSCs) and its role in pancreatic fibrosis. This article elaborates on the mechanism of action of PSCs in CP, summarizes the current status of research on effective traditional Chinese medicine components and prescriptions for intervention of PSCs in the treatment of chronic CP, and proposes the future research directions for effective traditional Chinese medicine components and prescriptions, so as to provide a reference for the clinical treatment of CP patients in the future.
10.Safety and Efficacy of Radiofrequency Ablation for Superficial Parotid Pleomorphic Adenoma
Chih-Ying LEE ; Wei-Che LIN ; Sheng-Dean LUO ; Pi-Ling CHIANG ; An-Ni LIN ; Cheng-Kang WANG ; Chun-Yuan CHAO
Korean Journal of Radiology 2025;26(5):460-470
Objective:
To retrospectively compare the safety and efficacy of ultrasound-guided radiofrequency ablation (RFA) with parotidectomy for superficial pleomorphic adenoma (PA).
Materials and Methods:
From March 2022 to October 2023, 88 patients diagnosed with superficial parotid PA underwent either RFA (n = 12; mean age, 47.1 years) or parotidectomy (n = 76; mean age, 47.8 years). Patients in the RFA group were matched to those in the surgery group in a 1:1 ratio using propensity scores based on age, sex, tumor volume, diameter, location, and comorbidities. Ultrasound characteristics, cosmetic scores (0–4), numerical rating scale scores (0–10), and complications were assessed before the procedures and at 1-, 3-, and 6-month follow-ups. Outcomes were compared between baseline and follow-up in the RFA group and between the RFA and surgery groups.
Results:
In the RFA group, significant reductions in tumor volume were observed between baseline (median, 2.02 cm 3 ) and the 1-month follow-up (median, 1.21 cm 3 ; P = 0.015), between the 1-month and 3-month follow-ups (median, 0.53 cm 3 ; P= 0.002), and between the 3- and 6-month follow-ups (median, 0.23 cm 3 ; P = 0.003). The volume reduction ratios at 1, 3, and 6 months were 39.7%, 79.9%, and 88.0%, respectively. The cosmetic score was significantly lower at 3- and 6-month followup compared to baseline (median 1 and 1 vs. 4, P = 0.04). The numerical rating scale scores did not differ significantly from baseline throughout follow-up. In the propensity score-matched analysis (12 patients per group), RFA was associated with a shorter median procedure time (61.5 vs. 253.3 minutes; P < 0.001), shorter hospital stay (0 vs. 4 days; P < 0.001), and lower cost (1859.9 vs. 3512.4 USD; P < 0.001) than parotidectomy, with no significant difference in overall complication rates (33.3% [4/12] vs. 41.7% [5/12]; P = 1.000).
Conclusion
RFA may be a safe and effective alternative to surgery for superficial parotid PA, offering a shorter median procedure time, shorter hospital stay, and lower costs.

Result Analysis
Print
Save
E-mail