1.Protective Effect of Xuebijing on Lung Injury in Rats with Severe Acute Pancreatitis by Blocking FPRs/NLRP3 Inflammatory Pathway
Guixian ZHANG ; Dawei LIU ; Xia LI ; Xijing LI ; Pengcheng SHI ; Zhiqiao FENG ; Jun CAI ; Wenhui ZONG ; Xiumei ZHAO ; Hongbin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):113-120
ObjectiveTo explore the therapeutic effect of Xuebijing injection (XBJ) on severe acute pancreatitis induced acute lung injury (SAP-ALI) by regulating formyl peptide receptors (FPRs)/nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammatory pathway. MethodsSixty rats were randomly divided into a sham group, a SAP-ALI model group, low-, medium-, and high-dose XBJ groups (4, 8, and 12 mL·kg-1), and a positive drug (BOC2, 0.2 mg·kg-1) group. For the sham group, the pancreas of rats was only gently flipped after laparotomy, and then the abdomen was closed, while for the remaining five groups, SAP-ALI rat models were established by retrograde injection of 5% sodium taurocholate (Na-Tc) via the biliopancreatic duct. XBJ and BOC2 were administered via intraperitoneal injection once daily for 3 d prior to modeling and 0.5 h after modeling. Blood was collected from the abdominal aorta 6 h after the completion of modeling, and the expression of interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α) in plasma was measured by enzyme-linked immunosorbent assay (ELISA). The amount of ascites was measured, and the dry-wet weight ratios of pancreatic and lung tissue were determined. Pancreatic and lung tissue was taken for hematoxylin-eosin (HE) staining to observe pathological changes and then scored. The protein expression levels of FPR1, FPR2, and NLRP3 in lung tissue were detected by the immunohistochemical method. Western blot was used to detect the expression of FPR1, FPR2, and NLRP3 in lung tissue. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of FPR1, FPR2, and NLRP3 in lung tissue. ResultsCompared with the sham group, the SAP-ALI model group showed significantly decreased dry-wet weight ratio of lung tissue (P<0.01), serious pathological changes of lung tissue, a significantly increased pathological score (P<0.01), and significantly increased protein and mRNA expression levels of FPR1, FPR2, and NLRP3 in lung tissue (P<0.01). After BOC2 intervention, the above detection indicators were significantly reversed (P<0.01). After treatment with XBJ, the groups of different XBJ doses achieved results consistent with BOC2 intervention. ConclusionXBJ can effectively improve the inflammatory response of the lungs in SAP-ALI rats and reduce damage. The mechanism may be related to inhibiting the expression of FPRs and NLRP3 in lung tissue, which thereby reduces IL-1β and simultaneously antagonize the release of inflammatory factors IL-6 and TNF-α.
2.Reprogramming miR-146b-snphb Signaling Activates Axonal Mitochondrial Transport in the Zebrafish M-cell and Facilitates Axon Regeneration After Injury.
Xin-Liang WANG ; Zong-Yi WANG ; Xing-Han CHEN ; Yuan CAI ; Bing HU
Neuroscience Bulletin 2025;41(4):633-648
Acute mitochondrial damage and the energy crisis following axonal injury highlight mitochondrial transport as an important target for axonal regeneration. Syntaphilin (Snph), known for its potent mitochondrial anchoring action, has emerged as a significant inhibitor of both mitochondrial transport and axonal regeneration. Therefore, investigating the molecular mechanisms that influence the expression levels of the snph gene can provide a viable strategy to regulate mitochondrial trafficking and enhance axonal regeneration. Here, we reveal the inhibitory effect of microRNA-146b (miR-146b) on the expression of the homologous zebrafish gene syntaphilin b (snphb). Through CRISPR/Cas9 and single-cell electroporation, we elucidated the positive regulatory effect of the miR-146b-snphb axis on Mauthner cell (M-cell) axon regeneration at the global and single-cell levels. Through escape response tests, we show that miR-146b-snphb signaling positively regulates functional recovery after M-cell axon injury. In addition, continuous dynamic imaging in vivo showed that reprogramming miR-146b significantly promotes axonal mitochondrial trafficking in the pre-injury and early stages of regeneration. Our study reveals an intrinsic axonal regeneration regulatory axis that promotes axonal regeneration by reprogramming mitochondrial transport and anchoring. This regulation involves noncoding RNA, and mitochondria-associated genes may provide a potential opportunity for the repair of central nervous system injury.
Animals
;
Zebrafish
;
MicroRNAs/genetics*
;
Nerve Regeneration/physiology*
;
Mitochondria/metabolism*
;
Zebrafish Proteins/genetics*
;
Axons/metabolism*
;
Signal Transduction/physiology*
;
Axonal Transport/physiology*
;
Nerve Tissue Proteins/genetics*
3.Effects of Hot Night Exposure on Human Semen Quality: A Multicenter Population-Based Study.
Ting Ting DAI ; Ting XU ; Qi Ling WANG ; Hao Bo NI ; Chun Ying SONG ; Yu Shan LI ; Fu Ping LI ; Tian Qing MENG ; Hui Qiang SHENG ; Ling Xi WANG ; Xiao Yan CAI ; Li Na XIAO ; Xiao Lin YU ; Qing Hui ZENG ; Pi GUO ; Xin Zong ZHANG
Biomedical and Environmental Sciences 2025;38(2):178-193
OBJECTIVE:
To explore and quantify the association of hot night exposure during the sperm development period (0-90 lag days) with semen quality.
METHODS:
A total of 6,640 male sperm donors from 6 human sperm banks in China during 2014-2020 were recruited in this multicenter study. Two indices (i.e., hot night excess [HNE] and hot night duration [HND]) were used to estimate the heat intensity and duration during nighttime. Linear mixed models were used to examine the association between hot nights and semen quality parameters.
RESULTS:
The exposure-response relationship revealed that HNE and HND during 0-90 days before semen collection had a significantly inverse association with sperm motility. Specifically, a 1 °C increase in HNE was associated with decreased sperm progressive motility of 0.0090 (95% confidence interval [ CI]: -0.0147, -0.0033) and decreased total motility of 0.0094 (95% CI: -0.0160, -0.0029). HND was significantly associated with reduced sperm progressive motility and total motility of 0.0021 (95% CI: -0.0040, -0.0003) and 0.0023 (95% CI: -0.0043, -0.0002), respectively. Consistent results were observed at different temperature thresholds on hot nights.
CONCLUSION
Our findings highlight the need to mitigate nocturnal heat exposure during spermatogenesis to maintain optimal semen quality.
Humans
;
Male
;
Semen Analysis
;
Adult
;
Sperm Motility
;
Hot Temperature/adverse effects*
;
China
;
Middle Aged
;
Spermatozoa/physiology*
;
Young Adult
4.Effect and mechanism of tetramethylpyrazine on epithelial mesenchymal transformation and radioresistance of cervical cancer cells
Zong-Liang GUO ; Cai-Xia ZHANG ; Xin-Yue ZHANG
The Chinese Journal of Clinical Pharmacology 2024;40(8):1165-1169
Objective To study the impacts of tetramethylpyrazine(TMP)on the epithelial mesenchymal transformation and radiotherapy resistance of cervical cancer cells by regulating Yes-associated protein(YAP)/transcriptional coactivator(TAZ)signal pathway.Methods Human cervical cancer cell line C33A was randomly grouped into control group(without any intervention),TMP group(1.5 mg·mL-1TMP),TMP+NC group(TMP 1.5 mg·mL-1+transfection empty plasmid)and TMP+YAP1 group(TMP 1.5 mg·mL-1+transfection YAP1 overexpression plasmid).C33A-RR cells of human cervical cancer were constructed and randomly separated into control-RR group(without any intervention),radiation group(6 Gy radiation),RT group(6 Gy radiation+TMP 1.5 mg·mL-1),RTN group(6 Gy radiation+TMP 1.5 mg·mL-1+transfection empty plasmid)and RTY group(6 Gy radiation+TMP 1.5 mg·mL-1+transfection YAP1 overexpression plasmid).Western blot detected the relative expression levels of proteins;cell scratch and Transwell invasion experiments respectively examined cell migration and invasion;cell counting kit-8(CCK-8)and flow cytometry experiments respectively evaluated cell proliferation and apoptosis.Results The mobility of control group,TMP group,TMP+NC group and TMP+YAP1 group were(84.82±12.16)%,(20.67±4.48)%,(21.22±5.03)%and(76.74±0.15)%,respectively;E-cadherin protein expression levels were 0.16±0.03,0.70±0.08,0.72±0.13 and 0.19±0.04.Compared TMP group with control group of above indictors were statistically significant(all P<0.05);compared TMP+YAP1 group with TMP group and TMP+NC group were statistically significant(all P<0.05).YAP1 protein expression levels in control-RR group,radiation group,the RT group,RTN group and RTY group were 0.79±0.14,0.88±0.16,0.21±0.03,0.22±0.04 and 0.82±0.16,respectively;the survival rates were(100.00±0.00)%,(95.78±20.12)%,(40.13±6.07)%,(42.21±6.45)%and(90.12±18.65)%,respectively.The difference between radiation group and control-RR group were statistically significant(all P<0.05);the differences between RT group,RTN group and radiation group,RTY group were statistically significant(all P<0.05).Conclusion TMP can down regulate the expression of YAP/TAZ signal pathway protein,thereby inhibiting epithelial mesenchymal transformation,migration and invasion of cervical cancer cells,reducing their resistance to radiotherapy and promoting their apoptosis.
5.Establishment of a population pharmacokinetic model for linezolid in neonates with sepsis
Zong-Tai FENG ; Lian TANG ; Zu-Ming YANG ; Chu-Chu GAO ; Jia-Hui LI ; Yan CAI ; Lu-Fen DUAN
Chinese Journal of Contemporary Pediatrics 2024;26(11):1162-1168
Objective To establish the pharmacokinetic model of linezolid in neonates,and to optimize the administration regimen. Methods A prospective study was conducted among 64 neonates with sepsis who received linezolid as anti-infective therapy,and liquid chromatography-tandem mass spectrometry was used to measure the plasma concentration of the drug. Clinical data were collected,and nonlinear mixed effects modeling was used to establish a population pharmacokinetic (PPK) model. Monte Carlo simulation and evaluation was performed for the optimal administration regimen of children with different features. Results The pharmacokinetic properties of linezolid in neonates could be described by a single-compartment model with primary elimination,and the population typical values for apparent volume of distribution and clearance rate were 0.79 L and 0.34 L/h,respectively. The results of goodness of fit,visualization verification,and the Bootstrap method showed that the model was robust with reliable results of parameter estimation and prediction. Monte Carlo simulation results showed that the optimal administration regimen for linezolid in neonates was as follows:6 mg/kg,q8h,at 28 weeks of gestational age (GA);8 mg/kg,q8h,at 32 weeks of GA;9 mg/kg,q8h,at 34-37 weeks of GA;11 mg/kg,q8h,at 40 weeks of GA. Conclusions The PPK model established in this study can provide a reference for individual administration of linezolid in neonates. GA and body weight at the time of administration are significant influencing factors for the clearance rate of linezolid in neonates.
6.Mechanism study of BOC2 alleviating SAP inflammatory damage by inhibiting N-formyl peptide/formyl peptide receptor pathway
Guixian ZHANG ; Dawei LIU ; Wenchang LI ; Jun CAI ; Wenhui ZONG ; Hongbin LIU ; Xiumei ZHAO
Tianjin Medical Journal 2024;52(10):1031-1037
Objective To observe the effect of BOC-Phe-Leu-Phe-Leu-Phe(BOC2)on the expression of six types of mitochondrial N-formyl peptides(NFPs)in blood and two formyl peptide receptors(FPRs)in pancreatic tissue of rats with severe acute pancreatitis(SAP),and to explore its mechanism of alleviating inflammatory damage of SAP.Methods Forty male SD rats were randomly divided into four groups:the sham group,the SAP model group,the BOC2 low-dose and the BOC2 high-dose group(0.1 and 0.2 mg/kg),with 10 animals in each group.The SAP model was prepared by retrograde injection of 5%sodium taurocholate(50 mg/kg)into biliary and pancreatic ducts in the last 3 groups.BOC2 was intraperitoneally injected at 0.5 hours after SAP modeling,and samples were taken 4 hours after modeling.HE staining was used to observe pathological changes in pancreas.Western blot assay was used to detect the expression of NFPs in plasma.IHC staining was used to detect the expression of FPRs in pancreatic tissue.ELISA was used to detect interleukin(IL)-1β,IL-6 and tumor necrosis factor(TNF)-α levels in plasma.qPCR was used to detect expression levels of inflammatory factors in local pancreatic tissue.Results Compared with the model group,the BOC2 high-dose group and the BOC2 low-dose group showed improvement in pathological phenomena,such as pancreatic bleeding,acinar cell necrosis,inflammatory cell infiltration and edema.The pancreatic injury score,pancreatic FPRs expression,plasma MT-ND1,MT-ND2,MT-ND3,MT-ND5,MT-ND6 expression,as well as expression levels of three inflammatory factors in plasma and local pancreatic tissue,were significantly reduced(P<0.05).Conclusion BOC2 can reduce the production of inflammatory factors and alleviate SAP inflammatory damage by antagonizing mitochondrial NFPs/FPRs signaling pathway.
7.Effect of DDR1 on high glucose induced endothelial dysfunction by regulating NF-κB/NLRP3 mediated pyroptosis
Wei-Chen ZHAO ; Chun-Yuan HE ; Zong-Biao ZHAO ; Feng-Sen ZHANG ; Yi-Miao XIA ; Fa-Cai WANG ; Ting-Ting LI
Chinese Pharmacological Bulletin 2024;40(12):2325-2332
Aim To investigate the effect of discoidin domain receptor 1(DDR1)on high glucose induced endothelial cell dysfunction and the underlying mecha-nism.Methods Human umbilical vein endothelial cells(HUVECs)were cultured in vitro and divided in-to the control group and high glucose induction group(HG).HUVECs were treated with 33 mmol·L-1 D-glucose for 48 hours to construct endothelial dysfunc-tion.Pyroptosis was detected using propidium iodide staining(PI);lactate dehydrogenase(LDH)and IL-1β,IL-18 levels were determined using enzyme linked immunosorbent assay(ELISA);the expression of DDR1 and NF-κB/NLRP3 signaling pathway proteins and pyroptosis related proteinses were detected using Western blot.Subsequently,the experiment was divid-ed into the control group,HG group,HG+DDR1 NC group,and HG+DDR1 siRNA group.The effect of high glucose on the proliferation and migration of HU-VECs was observed after transfection with DDR1 siR-NA for 24 hours;ELISA was used to detect the endo-thelial nitric oxide synthase(eNOS),vascular cell ad-hesion molecule-1(VCAM-1),intercellular adhesion molecule-1(ICAM-1),as well as LDH,IL-1β,IL-18 levels;PI was employed to detect pyroptosis;Western blot was applied to detect DDR1 and NF-κB/NLRP3 signaling pathway proteins and pyroptosis related pro-teins.Results Compared with the control group,HG group decreased eNOS content,increased VCAM-1 and ICAM-1 contents,decreased cell viability and migration ability,and significantly increased the expressions of DDR1,p-NF-κB,NLRP3 and pyroptosis related pro-teins.The levels of LDH,IL-1β,IL-18 and the rate of pyroptosis significantly increased(P<0.05).Com-pared with HG group,DDR1 siRNA could promote the secretion of eNOS,decrease the levels of VCAM-1,ICAM-1,LDH,IL-1β and IL-1 8,increase cell viability and migration ability,reduce the expression of p-NF-κB,NLRP3 and pyroptosis related proteins,and inhibit high glucose-induced pyroptosis of HUVECs(P<0.05).Conclusions Gene silencing DDR1 can im-prove vascular endothelial cell dysfunction induced by high glucose,and the mechanism is related to the inhi-bition of NF-κB/NLRP3 signaling pathway mediated pyroptosis.
9.Berberine inhibits autophagy and promotes apoptosis of fibroblast-like synovial cells from rheumatoid arthritis patients through the ROS/mTOR signaling pathway.
Shiye ZONG ; Jing ZHOU ; Weiwei CAI ; Yun YU ; Ying WANG ; Yining SONG ; Jingwen CHENG ; Yuhui LI ; Yi GAO ; Baihai WU ; He XIAN ; Fang WEI
Journal of Southern Medical University 2023;43(4):552-559
OBJECTIVE:
To evaluate the regulatory effect of berberine on autophagy and apoptosis balance of fibroblast-like synoviocytes (FLSs) from patients with in rheumatoid arthritis (RA) and explore the mechanism.
METHODS:
The inhibitory effect of 10, 20, 30, 40, 50, 60, 70, and 80 μmol/L berberine on RA-FLS proliferation was assessed using CCK-8 method. Annexin V/PI and JC-1 immunofluorescence staining was used to analyze the effect of berberine (30 μmol/L) on apoptosis of 25 ng/mL TNF-α- induced RA-FLSs, and Western blotting was performed to detect the changes in the expression levels of autophagy- and apoptosis-related proteins. The cells were further treated with the autophagy inducer RAPA and the autophagy inhibitor chloroquine to observe the changes in autophagic flow by laser confocal detection of mCherry-EGFP-LC3B. RA-FLSs were treated with the reactive oxygen species (ROS) mimic H2O2 or the ROS inhibitor NAC, and the effects of berberine on ROS, mTOR and p-mTOR levels were observed.
RESULTS:
The results of CCK-8 assay showed that berberine significantly inhibited the proliferation of RA-FLSs in a time- and concentration-dependent manner. Flow cytometry and JC-1 staining showed that berberine (30 μmol/L) significantly increased apoptosis rate (P < 0.01) and reduced the mitochondrial membrane potential of RA-FLSs (P < 0.05). Berberine treatment obviously decreased the ratios of Bcl-2/Bax (P < 0.05) and LC3B-II/I (P < 0.01) and increased the expression of p62 protein in the cells (P < 0.05). Detection of mCherry-EGFP-LC3B autophagy flow revealed obvious autophagy flow block in berberine-treated RA-FLSs. Berberine significantly reduced the level of ROS in TNF-α-induced RA-FLSs and upregulated the expression level of autophagy-related protein p-mTOR (P < 0.01); this effect was regulated by ROS level, and the combined use of RAPA significantly reduced the pro-apoptotic effect of berberine in RA-FLSs (P < 0.01).
CONCLUSION
Berberine can inhibit autophagy and promote apoptosis of RA-FLSs by regulating the ROS-mTOR pathway.
Humans
;
Synoviocytes
;
Berberine/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Hydrogen Peroxide/metabolism*
;
Sincalide/metabolism*
;
Cell Proliferation
;
Arthritis, Rheumatoid/metabolism*
;
Signal Transduction
;
TOR Serine-Threonine Kinases/metabolism*
;
Apoptosis
;
Fibroblasts
;
Autophagy
;
Cells, Cultured
10.miR-519d-3p alleviates high glucose-induced human retinal microvascular endothelial cells dysfunction and inhibits angiogenesis by targeting hypoxia inducible factor 1 subunit alpha
Hui CAI ; Ying SONG ; Hua-Zong SHI ; Yu-Xiang YANG
International Eye Science 2023;23(7):1087-1092
AIM:To clarify the effect of miR-519d-3p on high glucose-induced human retinal microvascular endothelial cells(HRMEC)dysfunction and angiogenesis, and to elucidate the regulatory mechanism of miR-519d-3p on hypoxia inducible factor 1 subunit alpha(HIF-1α).METHODS: The normal glucose(NG)and high glucose(HG)cell models were established by inducing HRMEC with 5 and 30 mmol/L glucose, respectively. Control group: HG cell model was transfected with negative control mimics; mannitol group: the control group was added with 25 mmol/L mannitol; miR-519d-3p overexpression group: HG cell model was transfected with miR-519d-3p mimics; miR-519d-3p combined with HIF-1α overexpression group: HG cell model was co-transfected with miR-519d-3p mimics and HIF-1α overexpression vector. The expression of miR-519d-3p in each group was tested by real-time fluorescence quantitative PCR. The expression of HIF-1α protein in each group was tested by Western blotting. The binding sites between miR-519d-3p and HIF-1α were detected by luciferase reporter gene assay. The cell proliferation of each group was detected by CCK-8. The cell apoptosis of each group was tested by Hoechst 33342 staining. The protein expression of extracellular fluid inflammatory factors tumor necrosis factor-α(TNF-α), interleukin(IL)-1β and IL-6 in each group was tested by ELISA. The formation of new capillary lumen-like structures was detected by tubule formation assay.RESULTS: Compared with the NG, miR-519d-3p expression was significantly reduced in the HG cell model, while HIF-1α protein expression was significantly increased in the HG(all P<0.01). Compared with the control group, HIF-1α protein expression was significantly reduced in the miR-519d-3p overexpression group(P<0.01). The “CGUGAAA” sequence of miR-519d-3p could specifically bind to the “GCACUUU” sequence of HIF-1α 3'-untranslated region(3'-UTR). Compared with the control group, the miR-519d-3p overexpression group showed a significant increase in 24, 48 and 72h absorbance values, a significant decrease in cell apoptotic rate, a significant decrease in the concentrations of TNF-α, IL-1β and IL-6, and a significant decrease in the number of new capillary lumen-like structures(all P<0.01). Compared with the miR-519d-3p overexpression group, the miR-519d-3p combined with HIF-1α overexpression group showed a significant decrease in 24, 48 and 72h absorbance values, a significant increase in cell apoptotic rate, a significant increase in the concentrations of TNF-α, IL-1β and IL-6, and a significant increase in the number of new capillary lumen-like structures(all P<0.01). There was no difference between the control group and mannitol group in the comparison of the above indicators(all P>0.05).CONCLUSION: miR-519d-3p expression is down-regulated while HIF-1α protein expression is up-regulated in high glucose induced HRMEC model. HIF-1α is a target gene of miR-519d-3p. The miR-519d-3p targets HIF-1α to increase cell proliferation and reduce cell apoptosis and inflammation, thereby alleviating high glucose-induced HRMEC dysfunction and inhibiting angiogenesis.

Result Analysis
Print
Save
E-mail