1.Radiation dose and establishment of a regression model for dose estimation in pediatric chest CT
Ziyu ZHAO ; Yu LIANG ; Yutong ZHANG ; Zifan WEI ; Xinxing MA
Chinese Journal of Radiological Health 2025;34(5):654-659
Objective To investigate the differences in radiation dose during chest CT examinations among children of different age groups and establish dose estimation regression models. Methods Chest CT data from 135 children aged 4 to 15 years were retrospectively collected from the First Affiliated Hospital of Soochow University between January 2022 and December 2023. The children were divided into three age groups: 4-5 years, 6-10 years and 11-15 years. CT scanning parameters (tube voltage, tube current, scan range) and dosimetry parameters including volume CT dose index (CTDIvol) dose length product (DLP), and size-specific dose estimate (SSDE) were recorded. The Kruskal-Wallis test was used to compare intergroup differences. A Pearson correlation analysis was performed to assess the relationship between age and dose indicators. Both linear and nonlinear regression models were constructed. Results Age showed a weak positive correlation with CTDIvol (r = 0.27), a moderate positive correlation with DLP (r = 0.60), and a moderate negative correlation with SSDE (r = −0.55). Linear regression analysis revealed that DLP increased with age (y = 117.85 + 9.81x, R2 = 0.36), while SSDE decreased with age (y = 12.4 − 0.18x, R2 = 0.32). Using orthogonal distance regression, the goodness-of-fit of the nonlinear models for DLP and SSDE significantly improved (R2 = 0.99 and 0.94, respectively). Conclusion In pediatric chest CT dose assessment, CTDIvol underestimates radiation dose compared to SSDE and fails to account for patient body size. The dose estimation models constructed with orthogonal distance regression outperform those established using the least squares method, demonstrating higher fitting accuracy, and can serve as a reference for personalized dose management in pediatric CT examinations.
3.MYB polymorphism molecular marker: A novel molecular marker for authenticity and geographical origin identification of Citri Reticulatae Pericarpium.
Qiqing CHENG ; Ziyu TANG ; Yue OUYANG ; Chunsong CHENG ; Chichou LAO ; Hao CUI ; Hua ZHOU ; Yongshu LIANG
Chinese Herbal Medicines 2025;17(2):296-306
OBJECTIVE:
Citri Reticulatae Pericarpium (Chenpi, CRP) is one of the most used traditional Chinese medicines with great medicinal, dietary and collection values, among which the Citrus reticulata cv. 'Chachi' (Citrus reticulata cv. Chachiensis) from Guangdong Xinhui is the geoherb of CRP. Xinhui CRP in the market was often counterfeited with other varieties or origins, molecular identification method can effectively distinguish different CRP varieties, but it's still a difficult problem to identify the same CRP variety from different origin. It is necessary to discover a new molecular marker to ensure the safe and effective application of Xinhui CRP.
METHODS:
We selected one of the most studied transcription factor families in Citrus genus, MYB, to design the specific candidate primers on the conserved region. The primers with good band repeatability and high polymorphism were screened for PCR amplification of the test materials, and the genetic similarity coefficient among different families, genera, species, and origins were calculated. The cluster analysis was performed by unweighted pair group method using arithmetic average (UPGMA).
RESULTS:
A total of ten MYB primers were screened out to identify Xinhui CRP from plants from different family (Panax ginseng and Morus alba), genus (Clausena lansium and Zanthoxylum schinifolium), and species (Citrus reticulata, C. sinensis and C. maxima). Furthermore, two from the ten primers, M1 and M10, were found to distinguish Xinhui CRP from other origins. There were 169, 113, 133 and 134 polymorphic bands in the identification of different families, genera, species, and origins respectively, and the accordingly polymorphism ration were 79.88%, 76.87%, 79.20% and 82.84%. Moreover, M1 was discovered to be the best primer to identify Xinhui CRP from other seven origins, the cluster analysis results based on the genetic similarity coefficients were consistent with the geographical distribution.
CONCLUSION
This study established a novel molecular identification method according to MYB transcription factor, which can analyze the potential parental relationship of CRP germplasm, as well as identify the quality and origins of Xinhui CPR.
4.Bardoxolone methyl blocks the efflux of Zn2+ by targeting hZnT1 to inhibit the proliferation and metastasis of cervical cancer.
Yaxin WANG ; Qinqin LIANG ; Shengjian LIANG ; Yuanyue SHAN ; Sai SHI ; Xiaoyu ZHOU ; Ziyu WANG ; Zhili XU ; Duanqing PEI ; Mingfeng ZHANG ; Zhiyong LOU ; Binghong XU ; Sheng YE
Protein & Cell 2025;16(11):991-996
5.Incidence of postoperative complications in Chinese patients with gastric or colorectal cancer based on a national, multicenter, prospective, cohort study
Shuqin ZHANG ; Zhouqiao WU ; Bowen HUO ; Huining XU ; Kang ZHAO ; Changqing JING ; Fenglin LIU ; Jiang YU ; Zhengrong LI ; Jian ZHANG ; Lu ZANG ; Hankun HAO ; Chaohui ZHENG ; Yong LI ; Lin FAN ; Hua HUANG ; Pin LIANG ; Bin WU ; Jiaming ZHU ; Zhaojian NIU ; Linghua ZHU ; Wu SONG ; Jun YOU ; Su YAN ; Ziyu LI
Chinese Journal of Gastrointestinal Surgery 2024;27(3):247-260
Objective:To investigate the incidence of postoperative complications in Chinese patients with gastric or colorectal cancer, and to evaluate the risk factors for postoperative complications.Methods:This was a national, multicenter, prospective, registry-based, cohort study of data obtained from the database of the Prevalence of Abdominal Complications After Gastro- enterological Surgery (PACAGE) study sponsored by the China Gastrointestinal Cancer Surgical Union. The PACAGE database prospectively collected general demographic characteristics, protocols for perioperative treatment, and variables associated with postoperative complications in patients treated for gastric or colorectal cancer in 20 medical centers from December 2018 to December 2020. The patients were grouped according to the presence or absence of postoperative complications. Postoperative complications were categorized and graded in accordance with the expert consensus on postoperative complications in gastrointestinal oncology surgery and Clavien-Dindo grading criteria. The incidence of postoperative complications of different grades are presented as bar charts. Independent risk factors for occurrence of postoperative complications were identified by multifactorial unconditional logistic regression.Results:The study cohort comprised 3926 patients with gastric or colorectal cancer, 657 (16.7%) of whom had a total of 876 postoperative complications. Serious complications (Grade III and above) occurred in 4.0% of patients (156/3926). The rate of Grade V complications was 0.2% (7/3926). The cohort included 2271 patients with gastric cancer with a postoperative complication rate of 18.1% (412/2271) and serious complication rate of 4.7% (106/2271); and 1655 with colorectal cancer, with a postoperative complication rate of 14.8% (245/1655) and serious complication rate of 3.0% (50/1655). The incidences of anastomotic leakage in patients with gastric and colorectal cancer were 3.3% (74/2271) and 3.4% (56/1655), respectively. Abdominal infection was the most frequently occurring complication, accounting for 28.7% (164/572) and 39.5% (120/304) of postoperative complications in patients with gastric and colorectal cancer, respectively. The most frequently occurring grade of postoperative complication was Grade II, accounting for 65.4% (374/572) and 56.6% (172/304) of complications in patients with gastric and colorectal cancers, respectively. Multifactorial analysis identified (1) the following independent risk factors for postoperative complications in patients in the gastric cancer group: preoperative comorbidities (OR=2.54, 95%CI: 1.51-4.28, P<0.001), neoadjuvant therapy (OR=1.42, 95%CI:1.06-1.89, P=0.020), high American Society of Anesthesiologists (ASA) scores (ASA score 2 points:OR=1.60, 95% CI: 1.23-2.07, P<0.001, ASA score ≥3 points:OR=0.43, 95% CI: 0.25-0.73, P=0.002), operative time >180 minutes (OR=1.81, 95% CI: 1.42-2.31, P<0.001), intraoperative bleeding >50 mL (OR=1.29,95%CI: 1.01-1.63, P=0.038), and distal gastrectomy compared with total gastrectomy (OR=0.65,95%CI: 0.51-0.83, P<0.001); and (2) the following independent risk factors for postoperative complications in patients in the colorectal cancer group: female (OR=0.60, 95%CI: 0.44-0.80, P<0.001), preoperative comorbidities (OR=2.73, 95%CI: 1.25-5.99, P=0.030), neoadjuvant therapy (OR=1.83, 95%CI:1.23-2.72, P=0.008), laparoscopic surgery (OR=0.47, 95%CI: 0.30-0.72, P=0.022), and abdominoperineal resection compared with low anterior resection (OR=2.74, 95%CI: 1.71-4.41, P<0.001). Conclusion:Postoperative complications associated with various types of infection were the most frequent complications in patients with gastric or colorectal cancer. Although the risk factors for postoperative complications differed between patients with gastric cancer and those with colorectal cancer, the presence of preoperative comorbidities, administration of neoadjuvant therapy, and extent of surgical resection, were the commonest factors associated with postoperative complications in patients of both categories.
6.Correlation analysis of immune antibodies with pelvic inflammatory diseases
Fang LIANG ; Hanlin XIE ; Yanxing LIU ; Peiqi WEI ; Zhenghe SHENG ; Yinghong WENG ; Jingchun QIN ; Jian ZENG ; Chuchu WEI ; Dan SONG ; Suzhang LIU ; Yuanyue ZHU ; Ziyu LYU
Immunological Journal 2024;40(5):480-484
This study was designed to evaluate the correlation between immune antibodies and pelvic inflammatory disease(PID)using retrospective analysis.Cases were selected from 171 patients who met the diagnosis of PID in Liuzhou People's Hospital of Guangxi Province from January 2022 to March 2023,and the PID patients were further divided into simple PID group(53 cases)and in PID combined with reproductive tract infection group(118 cases)according to the presence or absence of reproductive tract infections,while 83 cases of women who did not meet the specific diagnostic criteria of PID and did not have reproductive tract infections were selected as the control group during the same period.The positive rate of immune antibodies in the three groups were observed and compared to explore the relationship between immune antibodies and PID.Data showed that the positive rates of immune antibodies were significantly higher in the PID alone group and the PID combined with reproductive tract infection group than that in the control group.Furthermore,the positive rate of immune antibody TPOAb was significant difference in the PID combined with reproductive tract infection group and the PID alone group(P<0.05).In conclusion,TPOAb is closely associated with reproductive tract infections.
7.Methodology for Developing Patient Guideline (3):Reporting Frameworks and Presentation
Lijiao YAN ; Ning LIANG ; Haili ZHANG ; Nannan SHI ; Ziyu TIAN ; Ruixiang WANG ; Xiaojia NI ; Yufang HAO ; Wei CHEN ; Yingfeng ZHOU ; Dan YANG ; Shuyu YANG ; Yujing ZHANG ; Ziteng HU ; Jianping LIU
Journal of Traditional Chinese Medicine 2024;65(22):2304-2309
Standardized reporting is a crucial factor affecting the use of patient guidelines (PGs), particularly in the reporting and presentation of recommendations. This paper introduced the current status of PG reporting, including the research on PG content and presentation formats, and provided comprehensive recommendations for PG reporting from aspects such as overall framework, recommendations, presentation format, and readability. First, the presentation of PG recommendations should include clearly defined clinical questions, recommendations and their rationale, and guidance on how patients should implement the interventions; for specific content in the PG, such as level of evidence, level of recommendation, it is recommended to explain in text the reasons for giving different levels of recommendation, i.e., to present the logic behind giving the level of recommendation to the patient; additional information needed in the recommendation framework should be supplemented by tracing references or authoritative textbooks and literature that support the recommendations. Subsequently, the PG text should be written based on the Reporting Checklist for Public Versions of Guidelines (RIGHT-PVG) reporting framework. Finally, to enhance readability and comprehension, it is recommended to refer to the Patient Education Materials Assessment Tool (PEMAT) for translating PG content. To enhance the readability of PGs, it is suggested to present the PG content in a persona-lized and layered manner.
8.Incidence of postoperative complications in Chinese patients with gastric or colorectal cancer based on a national, multicenter, prospective, cohort study
Shuqin ZHANG ; Zhouqiao WU ; Bowen HUO ; Huining XU ; Kang ZHAO ; Changqing JING ; Fenglin LIU ; Jiang YU ; Zhengrong LI ; Jian ZHANG ; Lu ZANG ; Hankun HAO ; Chaohui ZHENG ; Yong LI ; Lin FAN ; Hua HUANG ; Pin LIANG ; Bin WU ; Jiaming ZHU ; Zhaojian NIU ; Linghua ZHU ; Wu SONG ; Jun YOU ; Su YAN ; Ziyu LI
Chinese Journal of Gastrointestinal Surgery 2024;27(3):247-260
Objective:To investigate the incidence of postoperative complications in Chinese patients with gastric or colorectal cancer, and to evaluate the risk factors for postoperative complications.Methods:This was a national, multicenter, prospective, registry-based, cohort study of data obtained from the database of the Prevalence of Abdominal Complications After Gastro- enterological Surgery (PACAGE) study sponsored by the China Gastrointestinal Cancer Surgical Union. The PACAGE database prospectively collected general demographic characteristics, protocols for perioperative treatment, and variables associated with postoperative complications in patients treated for gastric or colorectal cancer in 20 medical centers from December 2018 to December 2020. The patients were grouped according to the presence or absence of postoperative complications. Postoperative complications were categorized and graded in accordance with the expert consensus on postoperative complications in gastrointestinal oncology surgery and Clavien-Dindo grading criteria. The incidence of postoperative complications of different grades are presented as bar charts. Independent risk factors for occurrence of postoperative complications were identified by multifactorial unconditional logistic regression.Results:The study cohort comprised 3926 patients with gastric or colorectal cancer, 657 (16.7%) of whom had a total of 876 postoperative complications. Serious complications (Grade III and above) occurred in 4.0% of patients (156/3926). The rate of Grade V complications was 0.2% (7/3926). The cohort included 2271 patients with gastric cancer with a postoperative complication rate of 18.1% (412/2271) and serious complication rate of 4.7% (106/2271); and 1655 with colorectal cancer, with a postoperative complication rate of 14.8% (245/1655) and serious complication rate of 3.0% (50/1655). The incidences of anastomotic leakage in patients with gastric and colorectal cancer were 3.3% (74/2271) and 3.4% (56/1655), respectively. Abdominal infection was the most frequently occurring complication, accounting for 28.7% (164/572) and 39.5% (120/304) of postoperative complications in patients with gastric and colorectal cancer, respectively. The most frequently occurring grade of postoperative complication was Grade II, accounting for 65.4% (374/572) and 56.6% (172/304) of complications in patients with gastric and colorectal cancers, respectively. Multifactorial analysis identified (1) the following independent risk factors for postoperative complications in patients in the gastric cancer group: preoperative comorbidities (OR=2.54, 95%CI: 1.51-4.28, P<0.001), neoadjuvant therapy (OR=1.42, 95%CI:1.06-1.89, P=0.020), high American Society of Anesthesiologists (ASA) scores (ASA score 2 points:OR=1.60, 95% CI: 1.23-2.07, P<0.001, ASA score ≥3 points:OR=0.43, 95% CI: 0.25-0.73, P=0.002), operative time >180 minutes (OR=1.81, 95% CI: 1.42-2.31, P<0.001), intraoperative bleeding >50 mL (OR=1.29,95%CI: 1.01-1.63, P=0.038), and distal gastrectomy compared with total gastrectomy (OR=0.65,95%CI: 0.51-0.83, P<0.001); and (2) the following independent risk factors for postoperative complications in patients in the colorectal cancer group: female (OR=0.60, 95%CI: 0.44-0.80, P<0.001), preoperative comorbidities (OR=2.73, 95%CI: 1.25-5.99, P=0.030), neoadjuvant therapy (OR=1.83, 95%CI:1.23-2.72, P=0.008), laparoscopic surgery (OR=0.47, 95%CI: 0.30-0.72, P=0.022), and abdominoperineal resection compared with low anterior resection (OR=2.74, 95%CI: 1.71-4.41, P<0.001). Conclusion:Postoperative complications associated with various types of infection were the most frequent complications in patients with gastric or colorectal cancer. Although the risk factors for postoperative complications differed between patients with gastric cancer and those with colorectal cancer, the presence of preoperative comorbidities, administration of neoadjuvant therapy, and extent of surgical resection, were the commonest factors associated with postoperative complications in patients of both categories.
9.Methodology for Developing Patient Guideline(1):The Concept of Patient Guideline
Lijiao YAN ; Ning LIANG ; Ziyu TIAN ; Nannan SHI ; Sihong YANG ; Yufang HAO ; Wei CHEN ; Xiaojia NI ; Yingfeng ZHOU ; Ruixiang WANG ; Zeyu YU ; Shuyu YANG ; Yujing ZHANG ; Ziteng HU ; Jianping LIU
Journal of Traditional Chinese Medicine 2024;65(20):2086-2091
Since the concept of patient versions of guidelines (PVGs) was introduced into China, several PVGs have been published in China, but we found that there is a big difference between the concept of PVG at home and abroad, and the reason for this difference has not been reasonably explained, which has led to ambiguity and even misapplication of the PVG concept by guideline developers. By analyzing the background and purpose of PVGs, and the understanding of the PVG concept by domestic scholars, we proposed the term patient guidelines (PGs). This refers to guidelines developed under the principles of evidence-based medicine, centered on health issues that concern patients, and based on the best available evidence, intended for patient use. Except for the general attribute of providing information or education, which is typical of common health education materials, PGs also provide recommendations and assist in decision-making, so PGs include both the patient versions of guidelines (PVG) as defined by the Guidelines International Network (GIN) and "patient-directed guidelines", i.e. clinical practice guidelines resulting from the adaptation or reformulation of recommendations through clinical practice guidelines.
10.Methodology for Developing Patient Guideline (2):Process and Methodology
Lijiao YAN ; Ning LIANG ; Nannan SHI ; Sihong YANG ; Ziyu TIAN ; Dan YANG ; Xiaojia NI ; Yufang HAO ; Wei CHEN ; Ruixiang WANG ; Yingfeng ZHOU ; Shibing LIANG ; Shuyu YANG ; Yujing ZHANG ; Ziteng HU ; Jianping LIU
Journal of Traditional Chinese Medicine 2024;65(21):2194-2198
At present, the process and methodology of patient guidelines (PGs) development varies greatly and lacks systematic and standardised guidance. In addition to the interviews with PG developers, we have sorted out the relevant methodology for the adaptation and development of existing clinical practice guideline recommendations and facilitated expert deliberations to achieve a consensus, so as to finally put forward a proposal for guidance on the process and methodology for the development of PGs. The development of PGs can be divided into the preparation stage, the construction stage, and the completion stage in general, but the specific steps vary according to the different modes of development of PGs. The development process of Model 1 is basically the same as the patient version of the guideline development process provided by the International Guidelines Network, i.e., team formation, screening of recommendations, guideline drafing, user testing and feedback, approval and dissemination. The developer should also first determine the need for and scope of translating the clinical practice guideline into a patient version during the preparation phase. Model 2 adds user experience and feedback to the conventional clinical practice guideline development process (forming a team, determining the scope of the PG, searching, evaluating and integrating evidence, forming recommendations, writing the guideline, and expert review). Based on the different models, we sort out the process and methods of PG development and introduce the specific methods of PG development, including how to identify the clinical problem and how to form recommendations based on the existing clinical practice guidelines, with a view to providing reference for guideline developers and related researchers.

Result Analysis
Print
Save
E-mail