1.Association of dietary behaviors, physical activity and altitude with nutritional status among children and adolescents
Chinese Journal of School Health 2025;46(10):1411-1415
Objective:
To analyze the association between altitudes and nutritional status of children and adolescents, and to explore the moderating effects of dietary behaviors and physical activity, so as to provide a scientific basis for developing lifestyle interventions tailored to local conditions.
Methods:
From September to November 2023, physical examinations and questionnaire surveys were conducted among children and adolescents aged 7-17 in two autonomous regions, Inner Mongolia and Xizang, with a final sample of 156 511 participants by the stratified cluster random sampling method. Height and weight were measured to calculate body mass index (BMI). Sociodemographic characteristics, dietary behaviors, and physical activity were collected via questionnaires, while the altitude of each participant s school was obtained using Amap. Logistic regression was performed to examine the relationship between altitudes and nutritional status. Interaction terms and stratified analyses were applied to assess the moderating effects of dietary behaviors and physical activity. Restricted cubic spline (RCS) were used for visualization.
Results:
In 2023, the prevalence of wasting and overweight/obesity among children and adolescents in Xizang were 9.7% and 9.0%, respectively, compared to 2.9% and 22.0% in Inner Mongolia. Logistic regression analysis results showed that for every 1 km increase in altitude, the risk of wasting increased, while the risk of overweight/obesity decreased ( OR =1.43, 0.19, both P <0.05). The results of the stratified analysis showed that compared to those living at altitudes <1 km, children and adolescents with healthy diets showed no significant association between altitudes (1-<2 and 2-<3 km) and wasting ( OR =1.22, 0.75, both P >0.05), whereas significant associations were observed at 3-<4 and ≥4 km altitudes ( OR =2.25, 2.89, both P <0.05). In contrast, unhealthy dietary groups showed statistically significant associations across altitudes ( OR =1.18-4.04, all P <0.05), consistent with RCS results. No moderating effects were observed for physical activity on the altitude wasting association or for dietary behaviors and physical activity combined on the altitude overweight/obesity association ( P interaction =0.63, 0.10, 0.53).
Conclusion
Healthy dietary behaviors play a critical role in improving the nutritional status of children and adolescents and reducing regional disparities, providing a scientific foundation for public health policy formulation and implementation.
2.Invasiveness assessment by CT quantitative and qualitative features of lung cancers manifesting ground-glass nodules in 555 patients: A retrospective cohort study
Yantao YANG ; Wei WANG ; Yichen YANG ; Biying WANG ; Huilian HU ; Ziqi JIANG ; Dezhong CAI ; Yaowu DUAN ; Jiezhi JIANG ; Jia LUO ; Guangqiang ZHAO ; Yunchao HUANG ; Lianhua YE
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(01):51-58
Objective To explore the correlation between the quantitative and qualitative features of CT images and the invasiveness of pulmonary ground-glass nodules, providing reference value for preoperative planning of patients with ground-glass nodules. Methods The patients with ground-glass nodules who underwent surgical treatment and were diagnosed with pulmonary adenocarcinoma from September 2020 to July 2022 at the Third Affiliated Hospital of Kunming Medical University were collected. Based on the pathological diagnosis results, they were divided into two groups: a non-invasive adenocarcinoma group with in situ and minimally invasive adenocarcinoma, and an invasive adenocarcinoma group. Imaging features were collected, and a univariate logistic regression analysis was conducted on the clinical and imaging data of the patients. Variables with statistical difference were selected for multivariate logistic regression analysis to establish a predictive model of invasive adenocarcinoma based on independent risk factors. Finally, the sensitivity and specificity were calculated based on the Youden index. Results A total of 555 patients were collected. The were 310 patients in the non-invasive adenocarcinoma group, including 235 females and 75 males, with a meadian age of 49 (43, 58) years, and 245 patients in the invasive adenocarcinoma group, including 163 females and 82 males, with a meadian age of 53 (46, 61) years. The binary logistic regression analysis showed that the maximum diameter (OR=4.707, 95%CI 2.060 to 10.758), consolidation/tumor ratio (CTR, OR=1.027, 95%CI 1.011 to 1.043), maximum CT value (OR=1.025, 95%CI 1.004 to 1.047), mean CT value (OR=1.035, 95%CI 1.008 to 1.063), spiculation sign (OR=2.055, 95%CI 1.148 to 3.679), and vascular convergence sign (OR=2.508, 95%CI 1.345 to 4.676) were independent risk factors for the occurrence of invasive adenocarcinoma (P<0.05). Based on the independent predictive factors, a predictive model of invasive adenocarcinoma was constructed. The formula for the model prediction was: Logit(P)=–1.293+1.549×maximum diameter of lesion+0.026×CTR+0.025×maximum CT value+0.034×mean CT value+0.72×spiculation sign+0.919×vascular convergence sign. The area under the receiver operating characteristic curve of the model was 0.910 (95%CI 0.885 to 0.934), indicating that the model had good discrimination ability. The calibration curve showed that the predictive model had good calibration, and the decision analysis curve showed that the model had good clinical utility. Conclusion The predictive model combining quantitative and qualitative features of CT has a good predictive ability for the invasiveness of ground-glass nodules. Its predictive performance is higher than any single indicator.
3.Sema3A secreted by sensory nerve induces bone formation under mechanical loads.
Hongxiang MEI ; Zhengzheng LI ; Qinyi LV ; Xingjian LI ; Yumeng WU ; Qingchen FENG ; Zhishen JIANG ; Yimei ZHOU ; Yule ZHENG ; Ziqi GAO ; Jiawei ZHOU ; Chen JIANG ; Shishu HUANG ; Juan LI
International Journal of Oral Science 2024;16(1):5-5
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling. Here, we focused on the role of Semaphorin 3A (Sema3A), expressed by sensory nerves, in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement (OTM) model. Firstly, bone formation was activated after the 3rd day of OTM, coinciding with a decrease in sensory nerves and an increase in pain threshold. Sema3A, rather than nerve growth factor (NGF), highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM. Moreover, in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells (hPDLCs) within 24 hours. Furthermore, exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload. Mechanistically, Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway, maintaining mitochondrial dynamics as mitochondrial fusion. Therefore, Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation, both as a pain-sensitive analgesic and a positive regulator for bone formation.
Humans
;
Bone Remodeling
;
Cell Differentiation
;
Osteogenesis
;
Semaphorin-3A/pharmacology*
;
Trigeminal Ganglion/metabolism*
4.Current status of regional school health work in Tianjin during 2019-2023
Chinese Journal of School Health 2024;45(5):620-625
Objective:
To explore the current status and progress of regional school health work to provide policy reference for school health improvement.
Methods:
Survey data on school health work in Tianjin from 2019, 2021 and 2023 was used. School health staff allocation and expenditure of the health administrative department, CDC and education department, as well as the annual implementation of health education, prevention and control of common diseases and infectious diseases, sports activities and food nutrition in primary and secondary schools were analyzed. Statistical analysis was conducted using KruskalWallis test, Chisquare test, and Fishers exact test.
Results:
The number of school health staff in the health commissions and education departments from 2019, 2021 and 2023 was relatively stable. Parttime staffs were often employed by health commissions while fulltime staffs were mainly employed by education departments. The number of school health staff at CDCs increased gradually (H=12.65, P<0.01). School health expenditure of administrative departments and schools in 2021 and 2023 increased significantly compared with that in 2019 (H=22.28, 23.75, P<0.05). More than 95% of schools set up clinics or health care rooms, and about 97% of schools had school health technicians or health teachers. More than 90% of schools had health education courses over 4 hours per semester. The rate of mental health education increased by year (86.87%, 89.91%, 96.30%, Z=2.40,P<0.05). Lack of courses regarded safety emergency and risk avoidance, growth and development, and adolescent health education. The provision rate of psychological counseling services (89.00%, 97.25%, 100.00%) and psychological problem prevention and control (56.12%, 71.56%, 81.48%) also increased by year (Z=3.83, 3.96, P<0.01). The implementation rates of prevention and control of poor vision, dental caries, overweight and obesity were all higher than 80%, and the prevention and control rate of abnormal spinal curvature showed an increasing trend (38.78%, 77.06%, 72.22%, Z=4.87, P<0.01). More than 90% of schools met the standard for physical education class hours, and the proportion of schools conducting at least 30 minutes of recess physical activities every day increased year by year (65.00%, 80.73%, 85.98%, Z=3.59, P<0.01). All schools did not have shops.
Conclusions
School health work in Tianjin is effective and constantly developing. It is necessary to continue to increase the investment of human resources and expenditure in school health, explore the approaches of cooccurrence and prevention of common diseases, and improve the school sports and nutrition environment.
5.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
6.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
7.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
8.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
9.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.
10.Sema3A secreted by sensory nerve induces bone formation under mechanical loads
Mei HONGXIANG ; Li ZHENGZHENG ; Lv QINYI ; Li XINGJIAN ; Wu YUMENG ; Feng QINGCHEN ; Jiang ZHISHEN ; Zhou YIMEI ; Zheng YULE ; Gao ZIQI ; Zhou JIAWEI ; Jiang CHEN ; Huang SHISHU ; Li JUAN
International Journal of Oral Science 2024;16(1):62-72
Bone formation and deposition are initiated by sensory nerve infiltration in adaptive bone remodeling.Here,we focused on the role of Semaphorin 3A(Sema3A),expressed by sensory nerves,in mechanical loads-induced bone formation and nerve withdrawal using orthodontic tooth movement(OTM)model.Firstly,bone formation was activated after the 3rd day of OTM,coinciding with a decrease in sensory nerves and an increase in pain threshold.Sema3A,rather than nerve growth factor(NGF),highly expressed in both trigeminal ganglion and the axons of periodontal ligament following the 3rd day of OTM.Moreover,in vitro mechanical loads upregulated Sema3A in neurons instead of in human periodontal ligament cells(hPDLCs)within 24 hours.Furthermore,exogenous Sema3A restored the suppressed alveolar bone formation and the osteogenic differentiation of hPDLCs induced by mechanical overload.Mechanistically,Sema3A prevented overstretching of F-actin induced by mechanical overload through ROCK2 pathway,maintaining mitochondrial dynamics as mitochondrial fusion.Therefore,Sema3A exhibits dual therapeutic effects in mechanical loads-induced bone formation,both as a pain-sensitive analgesic and a positive regulator for bone formation.


Result Analysis
Print
Save
E-mail