1.Effect of high dacryocystorhinostomy combined with RS lacrimal duct recanalization on the treatment of chronic dacryocystitis
Zhaorong JIANG ; Binhui LI ; Banwei WANG
International Eye Science 2025;25(6):1033-1036
AIM: To explore the clinical effect of high dacryocystorhinostomy(DCR)combined with RS lacrimal duct recanalization on the treatment of chronic dacryocystitis.METHODS: Retrospective study. From January 2021 to January 2023, 110 patients(110 eyes)with chronic dacryocystitis treated in our hospital were collected and grouped according to the treatment method. The 55 eyes in the control group were treated with high DCR combined with suction cotton, and the 55 eyes in the monitored group were treated with high DCR combined with RS lacrimal duct recanalization. Follow-up for 6 mo, the clinical efficacy, quality of life, and complications were compared.RESULTS:At 6 mo after surgery, the monitored group had higher anatomical success rate than the control group(96.4% vs 83.6%), and had higher total effective rate than the control group(98.2% vs 78.2%; both P<0.05). At 6 mo after surgery, both groups had increased the Shot-Form Health Status Survey-36(SF-36)scores, with the monitored group having higher scores than the control group(all P<0.05); there was no statistical difference in complications between two groups(10.9% vs 20.0%, P>0.05).CONCLUSION:High DCR combined with RS lacrimal duct recanalization is safe and effective in treating patients with chronic dacryocystitis.
2.The Mesencephalic Locomotor Region for Locomotion Control
Xing-Chen GUO ; Yan XIE ; Xin-Shuo WEI ; Wen-Fen LI ; Ying-Yu SUN
Progress in Biochemistry and Biophysics 2025;52(7):1804-1816
Locomotion, a fundamental motor function encompassing various forms such as swimming, walking, running, and flying, is essential for animal survival and adaptation. The mesencephalic locomotor region (MLR), located at the midbrain-hindbrain junction, is a conserved brain area critical for controlling locomotion. This review highlights recent advances in understanding the MLR’s structure and function across species, from lampreys to mammals and birds, with a particular focus on insights gained from optogenetic studies in mammals. The goal is to uncover universal strategies for MLR-mediated locomotor control. Electrical stimulation of the MLR in species such as lampreys, salamanders, cats, and mice initiates locomotion and modulates speed and patterns. For example, in lampreys, MLR stimulation induces swimming, with increased intensity or frequency enhancing propulsive force. Similarly, in salamanders, graded stimulation transitions locomotor outputs from walking to swimming. Histochemical studies reveal that effective MLR stimulation sites colocalize with cholinergic neurons, suggesting a conserved neurochemical basis for locomotion control. In mammals, the MLR comprises two key nuclei: the cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN). Both nuclei contain glutamatergic and GABAergic neurons, with the PPN additionally housing cholinergic neurons. Optogenetic studies in mice by selectively activating glutamatergic neurons have demonstrated that the CnF and PPN play distinct roles in motor control: the CnF drives rapid escape behaviors, while the PPN regulates slower, exploratory movements. This functional specialization within the MLR allows animals to adapt their locomotion patterns and speed in response to environmental demands and behavioral objectives. Similar to findings in lampreys, the CnF and PPN in mice transmit motor commands to spinal effector circuits by modulating the activity of brainstem reticular formation neurons. However, they achieve this through distinct reticulospinal pathways, enabling the generation of specific behaviors. Further insights from monosynaptic rabies viral tracing reveal that the CnF and PPN integrate inputs from diverse brain regions to produce context-appropriate behaviors. For instance, glutamatergic neurons in the PPN receive signals from other midbrain structures, the basal ganglia, and medullary nuclei, whereas glutamatergic neurons in the CnF rarely receive inputs from the basal ganglia but instead are strongly influenced by the periaqueductal grey and inferior colliculus within the midbrain. These differential connectivity patterns underscore the specialized roles of the CnF and PPN in motor control, highlighting their unique contributions to coordinating locomotion. Birds exhibit exceptional flight capabilities, yet the avian MLR remains poorly understood. Comparative studies suggest that the pedunculopontine tegmental nucleus (PPTg) in birds is homologous to the mammalian PPN, which contains cholinergic neurons, while the intercollicular nucleus (ICo) or nucleus isthmi pars magnocellularis (ImC) may correspond to the CnF. These findings provide important clues for identifying the avian MLR and elucidating its role in flight control. However, functional validation through targeted experiments is urgently needed to confirm these hypotheses. Optogenetics and other advanced techniques in mice have greatly advanced MLR research, enabling precise manipulation of specific neuronal populations. Future studies should extend these methods to other species, particularly birds, to explore unique locomotor adaptations. Comparative analyses of MLR structure and function across species will deepen our understanding of the conserved and evolved features of motor control, revealing fundamental principles of locomotion regulation throughout evolution. By integrating findings from diverse species, we can uncover how the MLR has been adapted to meet the locomotor demands of different environments, from aquatic to aerial habitats.
3.Effect Mechanism of Guizhi Fulingwan in Regulating Sex Hormone Disorders in Rats with Benign Prostatic Hyperplasia Based on Serum Metabolomics
Chengchen LI ; Yuanpeng HUANG ; Qian ZHANG ; Dian ZENG ; Lingang KONG ; Yukun FAN ; Yuanduo XIA ; Hao CHEN ; Feng WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):21-29
ObjectiveTo analyse the efficacy and mechanism of Guizhi Fulingwan in regulating sex hormone disorders in rats with benign prostatic hyperplasia (BPH). MethodsThirty male SD rats were randomly divided into a sham group, a model group, a finasteride group (0.45 mg·kg-1·d-1), and low-dose and high-dose groups of Guizhi Fulingwan (0.135, 0.337 5 g∙kg-1∙d-1), with six in each group. The BPH model was prepared by subcutaneous injection of 3.5 mg∙kg-1∙d-1 testosterone propionate after debridement surgery in all groups except the sham group. The rats in the sham group and the model group were administered with an equal volume of saline by gavage, and the rest of the groups were administered with the corresponding medicinal solution by gavage for 35 days. Histopathology in rats was evaluated by prostate wet weight, volume, index, and hematoxylin-eosin (HE) staining. The serum sex hormone levels of testosterone (T), dihydrotestosterone (DHT), and estradiol (E2) were determined by enzyme-linked immunosorbent assay. The protein expression of the androgen receptor (AR) was detected by immunohistochemistry. The serum metabolism profiles of rats in the sham group, the model group, and the high-dose group of Guizhi Fulingwan were compared by ultra-high performance liquid chromatography tandem Fourier transform mass spectrometry (UHPLCQ Exactive) to screen for metabolic markers and to obtain relevant metabolic pathways. ResultsCompared with those in the sham group, the wet weight, volume, index, serum sex hormone level, and AR protein expression of the prostate in the model group were all elevated (P<0.05, P<0.01), and the histomorphology showed pathological changes. Compared with those in the model group, the wet weight, volume, index, serum sex hormone level, and AR protein expression of the prostate in the intervention groups showed a decreasing trend (P<0.05, P<0.01), and histopathology was improved. Serum metabolomics analysis obtained a total of 40 metabolic markers related to the intervention effect of Guizhi Fulingwan, such as dehydrosafynol, hyoscyamine, and lumichrome, which were involved in the pathways of autophagy, riboflavin metabolism, and retrograde endocannabinoid signaling. ConclusionGuizhi Fulingwan can effectively regulate sex hormone disorders in BPH rats, and its mechanism may be related to autophagy, riboflavin metabolism, and retrograde endocannabinoid signaling.
4.POU2F1 inhibits miR-29b1/a cluster-mediated suppression of PIK3R1 and PIK3R3 expression to regulate gastric cancer cell invasion and migration.
Yizhi XIAO ; Ping YANG ; Wushuang XIAO ; Zhen YU ; Jiaying LI ; Xiaofeng LI ; Jianjiao LIN ; Jieming ZHANG ; Miaomiao PEI ; Linjie HONG ; Juanying YANG ; Zhizhao LIN ; Ping JIANG ; Li XIANG ; Guoxin LI ; Xinbo AI ; Weiyu DAI ; Weimei TANG ; Jide WANG
Chinese Medical Journal 2025;138(7):838-850
BACKGROUND:
The transcription factor POU2F1 regulates the expression levels of microRNAs in neoplasia. However, the miR-29b1/a cluster modulated by POU2F1 in gastric cancer (GC) remains unknown.
METHODS:
Gene expression in GC cells was evaluated using reverse-transcription polymerase chain reaction (PCR), western blotting, immunohistochemistry, and RNA in situ hybridization. Co-immunoprecipitation was performed to evaluate protein interactions. Transwell migration and invasion assays were performed to investigate the biological behavior of GC cells. MiR-29b1/a cluster promoter analysis and luciferase activity assay for the 3'-UTR study were performed in GC cells. In vivo tumor metastasis was evaluated in nude mice.
RESULTS:
POU2F1 is overexpressed in GC cell lines and binds to the miR-29b1/a cluster promoter. POU2F1 is upregulated, whereas mature miR-29b-3p and miR-29a-3p are downregulated in GC tissues. POU2F1 promotes GC metastasis by inhibiting miR-29b-3p or miR-29a-3p expression in vitro and in vivo . Furthermore, PIK3R1 and/or PIK3R3 are direct targets of miR-29b-3p and/or miR-29a-3p , and the ectopic expression of PIK3R1 or PIK3R3 reverses the suppressive effect of mature miR-29b-3p and/or miR-29a-3p on GC cell metastasis and invasion. Additionally, the interaction of PIK3R1 with PIK3R3 promotes migration and invasion, and miR-29b-3p , miR-29a-3p , PIK3R1 , and PIK3R3 regulate migration and invasion via the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway in GC cells. In addition, POU2F1 , PIK3R1 , and PIK3R3 expression levels negatively correlated with miR-29b-3p and miR-29a-3p expression levels in GC tissue samples.
CONCLUSIONS
The POU2F1 - miR-29b-3p / miR-29a-3p-PIK3R1 / PIK3R1 signaling axis regulates tumor progression and may be a promising therapeutic target for GC.
MicroRNAs/metabolism*
;
Humans
;
Stomach Neoplasms/pathology*
;
Cell Line, Tumor
;
Cell Movement/physiology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Animals
;
Mice
;
Octamer Transcription Factor-1/metabolism*
;
Mice, Nude
;
Class Ia Phosphatidylinositol 3-Kinase/metabolism*
;
Neoplasm Invasiveness
;
Gene Expression Regulation, Neoplastic/genetics*
;
Male
;
Immunohistochemistry
;
Female
5.Performance evaluation of a wearable steady-state visual evoked potential based brain-computer interface in real-life scenario.
Xiaodong LI ; Xiang CAO ; Junlin WANG ; Weijie ZHU ; Yong HUANG ; Feng WAN ; Yong HU
Journal of Biomedical Engineering 2025;42(3):464-472
Brain-computer interface (BCI) has high application value in the field of healthcare. However, in practical clinical applications, convenience and system performance should be considered in the use of BCI. Wearable BCIs are generally with high convenience, but their performance in real-life scenario needs to be evaluated. This study proposed a wearable steady-state visual evoked potential (SSVEP)-based BCI system equipped with a small-sized electroencephalogram (EEG) collector and a high-performance training-free decoding algorithm. Ten healthy subjects participated in the test of BCI system under simplified experimental preparation. The results showed that the average classification accuracy of this BCI was 94.10% for 40 targets, and there was no significant difference compared to the dataset collected under the laboratory condition. The system achieved a maximum information transfer rate (ITR) of 115.25 bit/min with 8-channel signal and 98.49 bit/min with 4-channel signal, indicating that the 4-channel solution can be used as an option for the few-channel BCI. Overall, this wearable SSVEP-BCI can achieve good performance in real-life scenario, which helps to promote BCI technology in clinical practice.
Brain-Computer Interfaces
;
Humans
;
Evoked Potentials, Visual/physiology*
;
Electroencephalography
;
Wearable Electronic Devices
;
Algorithms
;
Signal Processing, Computer-Assisted
;
Adult
;
Male
6.Research progress on the effect and mechanism of NLRP3 inflammasome in head and neck squamous cell carcinoma.
Min ZHANG ; Nini ZHANG ; Guilin HUANG ; Zhuangzhuang LI ; Hao ZHANG ; Yuqi WU
Chinese Journal of Cellular and Molecular Immunology 2025;41(11):1025-1033
The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome, a high-molecular-weight protein complex in the cytoplasm, is composed of three core components: the sensor protein NLRP3, the adaptor protein apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and the effector protein caspase-1. It plays a critical role in regulating host immune and inflammatory responses. Studies have shown that the NLRP3 inflammasome has increasingly become a focal point in tumor molecular biology field. A growing body of evidence indicates that the increased expression and activation of the NLRP3 inflammasome is closely associated with the pathogenesis of head and neck squamous cell carcinoma (HNSCC) and the tumor microenvironment (TME). It may promote tumor proliferation, invasion, migration, and other biological behaviors through various regulatory mechanisms while influencing tumor immune evasion and therapy resistance, which holds promise as a prognostic biomarker for patients. This review explores the current effect and mechanism of the NLRP3 inflammasome and its signaling pathways in head and neck cancer, providing insights into clinical targeted drug development and molecular immunotherapy.
Humans
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Inflammasomes/metabolism*
;
Head and Neck Neoplasms/pathology*
;
Squamous Cell Carcinoma of Head and Neck/metabolism*
;
Tumor Microenvironment
;
Signal Transduction
;
Animals
7.Construction and evaluation of a cell model simulating the change of testicular microenvironment mediated by hypoxic and high-pressure conditions in varicocele mice.
Shu-Lin LIANG ; Li-Guo GENG ; Ling HAN ; Chu-Nan RONG ; Zhan QIN ; Juan DU ; Chao-Ba HE ; Shao-Ying YUAN
National Journal of Andrology 2025;31(6):483-491
Objective: Varicocele (VC) induces male infertility by mediating changes in the testicular microenvironment, in which testicular hypoxia and high-pressure are important pathological conditions. This study aims to compare the mouse spermatogenesis (GC-2spd) cells and Sertoli (TM4) cells of mouse testis after hypoxic modeling and hypoxic and high-pressure combined modeling, and to explore the feasibility of establishing a hypoxic and high-pressure combined cell model. Methods: On the basis of cell hypoxia induced by CoCl2, the complex model of testicular cell hypoxia and high pressure was constructed by changing the osmotic pressure of GC-2 and TM4 cell medium with a high concentration of NaCl solution. After selecting the intervention concentration of CoCl2 by MTT test and detecting the expression level of HIF-1α for the determination of the optimal osmotic pressure conditions of the cell model, the cells were divided into normal group, hypoxia model group and composite model group. And the levels of OS, programmed cell death, inflammatory factors, and the expression levels of pyroptosis-related proteins were compared between the normal group and the groups with different modeling methods. Results: The optimal intervention concentration of CoCl2 in GC-2 and TM4 cells was 150 and 250μmol/L, respectively, and the expression of HIF-1α was the highest in both cells under osmotic pressure of 500 mOsmol/kg (P<0.05). Compared with the normal group, the SOD levels of GC-2 and TM4 cells decreased (all P<0.05), CAT level decreased (all P<0.05), and MDA level increased (all P<0.01), and the OS level of GC-2 and TM4 cells was more obvious than that of the hypoxia model group (all P<0.05). Compared with the normal group, apoptosis occurred in GC-2 and TM4 cells after composite modeling (all P<0.05). Compared with the normal group, the mRNA expressions of IL-1β, IL-18, TNF-α and COX-2 in GC-2 and TM4 cells significantly increased (P<0.01) and higher than those in hypoxia model group (P<0.05) and induced pyroptosis (P<0.01). The expression level of GSDMD increased (P<0.05). Conclusion: The cell model with hypoxia and high pressure combined modeling can not only induce oxidative stress and apoptosis of cells better than that with hypoxia alone, but also further cause inflammatory response damage and pyroptosis, which simulates the changes of testis microenvironment mediated by hypoxia and high pressure combined conditions in VC. This cell model can be used for studying the pathogenesis of VC-associated male infertility, evaluating drug efficacy, and exploring pharmacological mechanisms.
Male
;
Animals
;
Varicocele/pathology*
;
Mice
;
Testis/metabolism*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Cell Hypoxia
;
Cobalt
;
Sertoli Cells/metabolism*
;
Osmotic Pressure
;
Spermatogenesis
;
Cellular Microenvironment
;
Infertility, Male
;
Disease Models, Animal
8.Intravenous delivery of STING agonists using acid-sensitive polycationic polymer-modified lipid nanoparticles for enhanced tumor immunotherapy.
Ying HE ; Ke ZHENG ; Xifeng QIN ; Siyu WANG ; Xuejing LI ; Huiwen LIU ; Mingyang LIU ; Ruizhe XU ; Shaojun PENG ; Zhiqing PANG
Acta Pharmaceutica Sinica B 2025;15(3):1211-1229
Although cancer immunotherapy has made great strides in the clinic, it is still hindered by the tumor immunosuppressive microenvironment (TIME). The stimulator of interferon genes (STING) pathway which can modulate TIME effectively has emerged as a promising therapeutic recently. However, the delivery of most STING agonists, specifically cyclic dinucleotides (CDNs), is performed intratumorally due to their insufficient pharmacological properties, such as weak permeability across cell membranes and vulnerability to nuclease degradation. To expand the clinical applicability of CDNs, a novel pH-sensitive polycationic polymer-modified lipid nanoparticle (LNP-B) system was developed for intravenous delivery of CDNs. LNP-B significantly extended the circulation of CDNs and enhanced the accumulation of CDNs within the tumor, spleen, and tumor-draining lymph nodes compared with free CDNs thereby triggering the STING pathway of dendritic cells and repolarizing pro-tumor macrophages. These events subsequently gave rise to potent anti-tumor immune reactions and substantial inhibition of tumors in CT26 colon cancer-bearing mouse models. In addition, due to the acid-sensitive property of the polycationic polymer, the delivery system of LNP-B was more biocompatible and safer compared with lipid nanoparticles formulated with an indissociable cationic DOTAP (LNP-D). These findings suggest that LNP-B has great potential in the intravenous delivery of CDNs for tumor immunotherapy.
9.Remodeling tumor immunosuppressive microenvironment through dual activation of immunogenic panoptosis and ferroptosis by H2S-amplified nanoformulation to enhance cancer immunotherapy.
Yingli LUO ; Maoyuan LINGHU ; Xianyu LUO ; Dongdong LI ; Jilong WANG ; Shaojun PENG ; Yinchu MA
Acta Pharmaceutica Sinica B 2025;15(3):1242-1254
The deficiency in immunogenicity and the presence of immunosuppression within the tumor microenvironment significantly hindered the efficacy of immunotherapy. Consequently, a nanoformulation containing metal sulfide of FeS and GSDMD plasmid (NPFeS/GD) had been developed to effectively augment antitumor immune responses through dual activation of immunogenic PANoptosis and ferroptosis, as well as reprogramming immunosuppressive effects via H2S amplification. The bioactive NPFeS/GD exhibited controlled release of GSDMD plasmid, H2S, and Fe2+ in response to the tumor microenvironment. Fe2+, H2S, and the expression of GSDMD protein could effectively elicit highly immunogenic PANoptosis and ferroptosis. Furthermore, releasing H2S could mitigate the overexpression of indoleamine 2,3-dioxygenase1 (IDO1) induced by immunogenic PANoptotic and ferroptotic cell death and disrupt the activity of IDO1. Consequently, NPFeS/GD effectively triggered the antitumor innate and adaptive immune responses through induction of PANoptotic and ferroptotic cell death and reshaped the tumor immunosuppressive microenvironment to enhance antitumor immunotherapy for metastasis inhibition. This study unveiled the significant potential of immunogenic PANoptosis and ferroptosis in H2S gas therapy for enhancing tumor immunotherapy, offering novel insights and ideas for the rational design of nanomedicine to enhance tumor immunogenicity while reprogramming the tumor immunosuppressive microenvironment.
10.A photodynamic nanohybrid system reverses hypoxia and augment anti-primary and metastatic tumor efficacy of immunotherapy.
Haitao YUAN ; Xiaoxian WANG ; Xin SUN ; Di GU ; Jinan GUO ; Wei HUANG ; Jingbo MA ; Chunjin FU ; Da YIN ; Guohua ZENG ; Ying LONG ; Jigang WANG ; Zhijie LI
Acta Pharmaceutica Sinica B 2025;15(6):3243-3258
Photodynamic immunotherapy is a promising strategy for cancer treatment. However, the dysfunctional tumor vasculature results in tumor hypoxia and the low efficiency of drug delivery, which in turn restricts the anticancer effect of photodynamic immunotherapy. In this study, we designed photosensitive lipid nanoparticles. The synthesized PFBT@Rox Lip nanoparticles could produce type I/II reactive oxygen species (ROS) by electron or energy transfer through PFBT under light irradiation. Moreover, this nanosystem could alleviate tumor hypoxia and promote vascular normalization through Roxadustat. Upon irradiation with white light, the ROS produced by PFBT@Rox Lip nanoparticles in situ dysregulated calcium homeostasis and triggered endoplasmic reticulum stress, which further promoted the release of damage-associated molecular patterns, enhanced antigen presentation, and stimulated an effective adaptive immune response, ultimately priming the tumor microenvironment (TME) together with the hypoxia alleviation and vessel normalization by Roxadustat. Indeed, in vivo results indicated that PFBT@Rox Lip nanoparticles promoted M1 polarization of tumor-associated macrophages, recruited more natural killer cells, and augmented infiltration of T cells, thereby leading to efficient photodynamic immunotherapy and potentiating the anti-primary and metastatic tumor efficacy of PD-1 antibody. Collectively, photodynamic immunotherapy with PFBT@Rox Lip nanoparticles efficiently program TME through the induction of immunogenicity and oxygenation, and effectively suppress tumor growth through immunogenic cell death and enhanced anti-tumor immunity.

Result Analysis
Print
Save
E-mail