1.Oral Herombopag Olamine and subcutaneous recombinant human thrombopoietin after haploidentical hematopoietic stem cell transplantation
Dai KONG ; Xinkai WANG ; Wenhui ZHANG ; Xiaohang PEI ; Cheng LIAN ; Xiaona NIU ; Honggang GUO ; Junwei NIU ; Zunmin ZHU ; Zhongwen LIU
Chinese Journal of Tissue Engineering Research 2025;29(1):1-7
BACKGROUND:Allogeneic hematopoietic stem cell transplantation is an important treatment for malignant hematological diseases,and delayed postoperative platelet implantation is a common complication that seriously affects the quality of patient survival;however,there are no standard protocols to improve platelet implantation rates and prevent platelet implantation delays. OBJECTIVE:To compare the safety and efficacy of oral Herombopag Olamine versus subcutaneous recombinant human thrombopoietin for promoting platelet implantation in patients with malignant hematological diseases undergoing haploid hematopoietic stem cell transplantation. METHODS:Clinical data of 163 patients with malignant hematological diseases who underwent haploidentical hematopoietic stem cell transplantation from January 2016 to October 2022 were retrospectively analyzed.A total of 72 patients who started to subcutaneously inject recombinant human thrombopoietin at+2 days were categorized into the recombinant human thrombopoietin group;a total of 27 patients who started to orally take Herombopag Olamine at+2 days were categorized into the Herombopag Olamine group;and 64 patients who did not apply Herombopag Olamine or recombinant human thrombopoietin were categorized into the blank control group.The implantation status,incidence of acute graft-versus-host disease of degree II-IV within 100 days,1-year survival rate,1-year recurrence rate,and safety were analyzed in the three groups. RESULTS AND CONCLUSION:(1)The average follow-up time was 52(12-87)months.The implantation time of neutrophils in the blank control group,recombinant human thrombopoietin group,and Herombopag Olamine group was(12.95±3.88)days,(14.04±3.71)days,and(13.89±2.74)days,respectively,with no statistically significant difference(P=0.352);the implantation time of platelets was(15.16±6.27)days,(17.67±6.52)days,and(17.00±4.75)days,with no statistically significant difference(P=0.287).(2)The complete platelet implantation rate on day 60 was 64.06%,90.28%,and 92.59%,respectively,and the difference was statistically significant(P<0.001).The subgroup analysis showed that the difference between the blank control group and the recombinant human thrombopoietin group was statistically significant(P<0.001),and the difference between the blank control group and the Herombopag Olamine group was statistically significant(P=0.004).The difference was not statistically significant between the recombinant human thrombopoietin group and Herombopag Olamine group(P=0.535).(3)100-day II-IV degree acute graft-versus-host disease incidence in the blank control group,recombinant human thrombopoietin group,and Herombopag Olamine group were 25.00%,30.56%,and 25.93%,respectively,and the difference was not statistically significant(P=0.752).(4)The incidence of cytomegalovirus anemia,cytomegalovirus pneumonia,and hepatic function injury had no statistical difference among the three groups(P>0.05).(5)During the follow-up period,there was no thrombotic event in any of the three groups of patients.(6)The results showed that recombinant human thrombopoietin and Herombopag Olamine could improve the platelet implantation rate of malignant hematological disease patients after haploidentical hematopoietic stem cell transplantation,with comparable efficacy and good safety.
2.Cyclocarya paliurus Polysaccharide Inhibits Benign Prostatic Hyperplasia by Reducing 5α-Reductase 2
Qinhui DAI ; Mengxia YAN ; Chen WANG ; Chenjun SHEN ; Chenying JIANG ; Bo YANG ; Huajun ZHAO ; Zhihui ZHU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):107-114
ObjectiveTo investigate the effect and mechanism of polysaccharide in water extract of Cyclocarya paliurus (CPWP) in inhibiting benign prostatic hyperplasia (BPH). MethodsCPWP was obtained by heating reflux, aqueous extraction, alcohol precipitation, and freeze drying. The chemical composition and structural properties of CPWP were analyzed by high performance liquid chromatography with 1-pheny-3-methyl-5-pyrazolone pre-column derivatization and infrared spectroscopy. Male SD rats were randomly assigned into control, model, finasteride (ig 5 mg·kg-1), and low-, medium-, and high-dose (ig 50, 75, 100 mg·kg-1) CPWP groups, with 8 rats in each group. The BPH model was established by subcutaneously injecting propionate testosterone in castrated rats. The rats in the drug intervention groups were administrated with corresponding drugs, and those in the control group were administrated with an equal volume of normal saline each day. After 30 consecutive days, the rats were sacrificed, and the prostate tissue was separated and weighed. The effects of drug interventions on the body weight, prostate wet weight, and prostate index of rats were examined. The prostate tissue was stained with hematoxylin-eosin (HE) for observation of pathological changes. Enzyme-linked immunosorbent assay was employed to measure the level of dihydrotestosterone (DHT), and immunohistochemical staining was used to detect the expression of steroid 5 alpha-reductase 2 (SRD5A2) and Ki67 in the prostate tissue. ResultsCPWP was identified as a saccharide, with characteristic absorption peaks of saccharides. CPWP showed the total sugar content of 44.15% and molecular weight within the range of 5.5-78.8 kDa, being composed of mannose, rhamnose, galacturonic acid, glucose, galactose, xylose, and arabinose. Compared with the control group, the model group had significantly increased prostate wet weight and prostate index (P<0.01), thick and tall prostate epithelial cells, increased internal wrinkles, papillary expansion into the cavity, an elevation in DHT level in the serum, and up-regulated expression of SRD5A2 and Ki67 in the prostate tissue (P<0.05, P<0.01). Compared with the model group, both the finasteride and CPWP groups showed decreases in prostate wet weight and prostate index (P<0.05, P<0.01), thinned prostate epithelial cells, with only a small portion of internal wrinkles and papillary expansion into the cavity, shortened papillary protrusions, lowered DHT level in the serum, and down-regulated expression of SRD5A2 and Ki67 in the prostate tissue (P<0.01). Moreover, CPWP exerted effects in a dose-dependent manner. ConclusionCPWP inhibits BPH by regulating the expression of SRD5A2.
3.Evaluation of Anti-osteoporosis Activity and Hepatotoxicity of Xianling Gubao Based on Zebrafish Model
Qiuman LI ; Yue QIAN ; Zixuan ZHU ; Yuan SONG ; Qian DENG ; Shengyun DAI ; Chongjun ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):87-94
ObjectiveTo investigate the association and translational mechanism between the hepatotoxicity of Xianling Gubao (XLGB) and its treatment of osteoporosis based on a zebrafish model. MethodsZebrafish were randomly selected four days after fertilization (4 dpf) and exposed to different concentrations of XLGB (0.7,0.35 mg·L-1) for 96 h. At the endpoint of the exposure, the mortality rates of zebrafish in the treatment groups of different concentrations were counted, and the "dose-toxicity" curves were plotted. The 10% sublethal concentration (LC10) was calculated. The liver area, acridine orange staining, and pathological tissue sections of transgenic zebrafish [CZ16 (gz15Tg.Tg (fabp 10a: ds Red; ela31: EGFP)] were used as indicators to confirm the hepatic damage caused by the sublethal concentration of XLGB. By using the prednisolone (PNSL)-induced osteoporosis model of zebrafish, the anti-osteoporosis activity of XLGB was evaluated by using the area of skull stained by alizarin red and the cumulative optical density value as indicators. Then, the toxicity difference of XLGB on the liver of zebrafish in healthy and osteoporotic states was compared, and the mechanism of the translational action of the toxicity of XLGB was predicted based on network pharmacology and real-time polymerase chain reaction(Real-time PCR). ResultsThe LC10 of XLGB on zebrafish (8 dpf) was 0.7 mg·L-1. Compared with the blank group, the sublethal concentration (LC10=0.7 mg·L-1, 1/2 LC10=0.35 mg·L-1) of XLGB induced an increase in the number of apoptosis of hepatocytes in a dose-dependent manner, and the tissue arrangement of the liver was disordered and loose. The vacuoles were obvious, and the fluorescence area of the liver was significantly reduced (P<0.01). Compared with the blank group, the mineralized area and cumulative optical density value of zebrafish skull in the PNSL model group were significantly reduced (P<0.01), and those in the 0.7,0.35 mg·L-1 XLGB treatment group were significantly increased compared with the model group (P<0.01). Most importantly, 0.7 mg·L-1 XLGB had no significant effect on the liver of zebrafish in the osteoporosis disease model compared with the blank group. The results of network pharmacology and real-time PCR experiments showed that the toxic transformation of XLGB might be related to the differences in the expression levels of key targets, such as tumor protein 53 (TP53), cysteine aspartic acid specific protease-3(Caspase-3), interleukin(IL)-6, and alkaline phosphatase(ALP) in different organismal states. ConclusionUnder certain conditions, XLGB has hepatotoxicity in normal zebrafish, but under osteoporotic conditions, XLGB not only exerts significant anti-osteoporosis activity but also alleviates hepatotoxicity significantly, which provides a reference for the safe clinical use of XLGB and real evidence for the theories of traditional Chinese medicine of attacking poison with poison and of treating disease with corresponding drugs without damage to the body.
4.Improvement of quality control methods and “quality evaluation via color discrimination”of Hypericum perforatum
Xishuo LI ; Benzheng SU ; Zhenni QU ; Juanjuan ZHU ; Yanpeng DAI ; Dianhua SHI
China Pharmacy 2025;36(6):661-667
OBJECTIVE To provide a reference for the quality control of Hypericum perforatum. METHODS High- performance liquid chromatography (HPLC) was used to establish fingerprints for 20 batches of H. perforatum and determine the contents of its main components: chlorogenic acid, rutin, hyperin, isoquercitrin, avicularin, quercitrin and quercetin. Cluster analysis was conducted using SPSS 26.0 software. The chromaticity values (luminance value L*, red-green value a*, and yellow- blue value b*) of H. perforatum powder were measured using electronic eye. A prediction model for the contents of seven components in H. perforatum based on its appearance chromaticity values was established using machine learning algorithms. The predictive performance of the models was evaluated using root-mean-square-error (RMSE). RESULTS A total of 16 common peaks were calibrated in the fingerprints of 20 batches of H. perforatum, and 9 peaks were identified, which were chlorogenic acid, rutin, hyperin, isoquercitrin, avicularin, quercitrin, quercetin, hypericin and hyperforin; the similarities of the 20 batches of samples and reference fingerprint ranged from 0.889-0.987. The contents of chlorogenic acid, rutin, hyperin, isoquercitrin, avicularin, quercitrin and quercetin were 0.025%-0.166%, 0.048%-0.339%, 0.082%-0.419%, 0.017%-0.209%, 0.011%-0.134%, 0.020%-0.135%, 0.041%-0.235%, respectively. Cluster analysis results showed that 18 batches of qualified H. perforatum were grouped into three categories, when the Euclidean distance was set to 1.4. L* of the 20 batches of H. perforatum ranged from 62.814 to 75.668, a* ranged from 1.409 to 3.490, and b* ranged from 25.249 to 30.759. RMSE of three prediction models, namely XGBoost, LightGBM, and AdaBoost, ranged from 0.008 to 0.070, indicating good fitting performance. XGBoost model predicted the contents of the other six components with high accuracy, except for rutin. CONCLUSIONS The established fingerprints and content determination methods are accurate, reproducible, and reliable. The content prediction model based on appearance chromaticity values, combined with machine learning algorithms, can be used for the quality control of H. perforatum.
5.Novel X-Clip transcatheter edge-to-edge repair system for treating severe functional mitral regurgitation: The first case report
Jiaqi DAI ; Da ZHU ; Shouzheng WANG ; Xiangbin PAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(04):567-570
For patients with moderate-to-severe functional mitral regurgitation (FMR) who continue to experience heart failure symptoms despite optimized medical and device therapy, transcatheter mitral valve edge-to-edge repair (TEER) is increasingly becoming a reliable treatment option. With the continuous research and development and improvement of TEER-related devices, there are currently dozens of domestically developed TEER devices undergoing clinical trials in China. In this study, we report the first case of a patient with severe FMR treated with the X-Clip® TEER system. The patient, a 60-year-old male, suffered FMR attributed to dilated cardiomyopathy. Preoperative transthoracic echocardiography showed severe mitral regurgitation (4+). He underwent percutaneous repair using the X-Clip® system, and immediate postoperative ultrasound showed mild mitral regurgitation. At the 1-month follow-up, the patient’s symptoms and New York Heart Association (NYHA) functional class improved, and a follow-up transthoracic echocardiogram showed mild mitral regurgitation (1+).
6.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
Hang LIU ; Yu-Xin ZHU ; Si-Lin GUO ; Xin-Yun PAN ; Yuan-Jie XIE ; Si-Cong LIAO ; Xin-Wen DAI ; Ping SHEN ; Yu-Bo XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2376-2392
ObjectiveTraditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays. MethodsThis study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics (MD) simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper. Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. MD simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. ResultsThe CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. ConclusionIt was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/AKT signaling pathway. These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
7.Trends in incidence and mortality of esophageal cancer in cancer registration areas of Anhui Province from 2014 to 2020
ZHU Qiang ; DAI Dan ; MENG Qinglian ; LÜ ; Yili ; DOU Lianjie ; DOU Tingting ; WANG Huadong
Journal of Preventive Medicine 2025;37(10):991-996
Objective:
To investigate the trends in incidence and mortality of esophageal cancer in cancer registration areas of Anhui Province from 2014 to 2020, so as to provide the basis for formulating prevention and control measures.
Methods:
The incidence and mortality data of esophageal cancer in Anhui Province from 2014 to 2020 was collected through the Cancer Registry in Anhui Province. The crude incidence and crude mortality were calculated. The Chinese population-standardized rate was standardized using the age structure of the standard population from the Fifth National Population Census in 2000. The trends in incidence and mortality of esophageal cancer were analyzed using the average annual percent change (APPC), stratified by genders, urban/rural areas, and ages.
Results:
In Anhui Province, the rank of esophageal cancer incidence dropped from the third in 2014 to the sixth in 2020. Concurrently, the crude incidence and Chinese population-standardized incidence declined from 28.74/100 000 and 20.74/100 000 to 19.23/100 000 and 10.59/100 000, respectively (AAPC=-5.846%, -9.658%, both P<0.05). The mortality rank remained stable at the fourth in 2014 and 2020, while the crude mortality and Chinese population-standardized mortality decreased from 19.96/100 000 and 14.09/100 000 to 16.00/100 000 and 8.41/100 000, respectively (AAPC=-3.542%, -7.784%, both P<0.05). The Chinese population-standardized incidence (AAPC=-9.682%, -9.188%, -6.175% and -12.575%, all P<0.05) and Chinese population-standardized mortality (AAPC=-7.734%. -7.447%. -5.366% and -10.209%, all P<0.05) showed declining trends in males, females, urban, and rural areas, respectively. From 2014 to 2020 in Anhui Province, the crude incidence and mortality of esophageal cancer generally increased with age. However, significant declining trends were observed in crude incidence (AAPC=-12.779%, -11.701%, -11.955% and -5.751%, all P<0.05) and crude mortality (AAPC=-12.255%, -11.120%, -10.985% and -5.751%, all P<0.05) for the age groups of 40-<50, 50-<60, 60-<70, 70-<80 years. A significant declining trend in crude incidence was also seen in the ≥80 years group (APPC=-6.334%, P<0.05), but the trend in crude mortality was no statistically significant (P>0.05).
Conclusion
In registration areas of Anhui Province, the incidence and mortality of esophageal cancer exhibited a declining trend from 2014 to 2020, calling for focused attention on the middle-aged and elderly population and enhanced health behaviors such as tobacco and alcohol control.
8.Mechanism Prediction of Banxia Baizhu Tianmatang and Danggui Shaoyaosan Intervention in Ménière's Disease Based on LC-MS Technology Combined with Network Bioinformatics
Xingye ZHU ; Jiaxiang YU ; Ziyue YUAN ; Shengrong GUO ; Jianyu DAI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):50-60
ObjectiveThis study aims to analyze the pharmacodynamic material basis and multi-target mechanism of action of Banxia Baizhu Tianmatang combined with Danggui Shaoyaosan in the treatment of Meniere's disease(MD). MethodsUltra-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) (mobile phase: gradient elution with 0.1% formic acid aqueous solution-acetonitrile. Mass spectrometry scanning range: m/z 90-1 300) was used to identify the chemical components of the compound recipe and components absorbed into blood. The core mechanism was predicted by combining network pharmacology (target screening via SwissTargetPrediction and GeneCards databases, and construction of protein-protein interaction (PPI) network by STRING) and molecular docking (evaluated by Autodock, with binding energy ≤ -5.0 kcal·mol-1). For animal experiment validation, 36 Sprague Dawley (SD) rats were divided into a blank group, a model group (postauricular injection of lipopolysaccharide (LPS) at 1 mg·kg-1), low/medium/high-dose Chinese medicine groups (5.94, 11.88, and 23.76 g·kg-1·d-1, respectively), and Western medicine group (betahistine at 0.1 mg·kg-1·d-1). After eight weeks of intervention, the gene and protein expressions in cochlear tissue were detected. Results①A total of 2 831 chemical components and 173 components absorbed into blood were identified, with terpenoids showing the highest absorption rate into blood(10.28%). ②60 common drug-disease targets were screened, with core targets including tumor necrosis factor-α(TNF-α),interleukin-6(IL-6), Toll-like receptor 4(TLR4), angiotensin-converting enzyme(ACE), and endothelial nitric oxide synthase 3(NOS3).These targets were enriched in the nuclear factor-κB(NF-κB) signaling pathway and renin-angiotensin system(P<0.05). Molecular docking showed that the active component YC-1 had a strong binding ability to TNF(binding energy-9.66 kcal·mol-1). ③In animal experiments, the high-dose Chinese medicine group significantly down-regulated the expression of pro-inflammatory factors TNF mRNA(P<0.01)and up-regulated vascular regulatory factors NOS3 protein(P<0.01), and alleviated cochlear pathological damage[hematoxylin eosin (HE) score: from 4 to 2]. ConclusionThis compound recipe synergistically regulates the TNF/NF-κB inflammatory pathway and ACE/NOS3 vascular homeostasis pathway through flavonoids, triterpenoids, and other components, thereby inhibiting endolymphatic hydrops and cochlear damage. It provides a scientific basis for the theory of "simultaneous treatment of phlegm and blood stasis" in traditional Chinese medicine.
9.Dissecting the histological heterogeneity of ovarian carcinosarcoma and high-grade serous ovarian cancer in primary and metastatic tumors by single-cell transcriptomic analysis.
Kaipeng XIE ; Shuang LIANG ; Nanxi WANG ; Qiaoying ZHU ; Jiangping WU ; Zhening PU ; Xiaoli WU ; Dake LI ; Juncheng DAI
Chinese Medical Journal 2025;138(17):2195-2197
10.Z-DNA-binding protein 1-mediated programmed cell death: Mechanisms and therapeutic implications.
Yuwei HUANG ; Lian WANG ; Yanghui ZHU ; Xiaoxue LI ; Yingying DAI ; Gu HE ; Xian JIANG
Chinese Medical Journal 2025;138(19):2421-2451
Programmed cell death (PCD) is characterized as a cell death pathway governed by specific gene-encoding requirements, plays crucial roles in the homeostasis and innate immunity of organisms, and serves as both a pathogenic mechanism and a therapeutic target for a variety of human diseases. Z-DNA-binding protein 1 (ZBP1) functions as a cytosolic nucleic acid sensor, utilizing its unique Zα domains to detect endogenous or exogenous nucleic acids and its receptor-interacting protein homotypic interaction motif (RHIM) domains to sense or bind specific signaling molecules, thereby exerting regulatory effects on various forms of PCD. ZBP1 is involved in apoptosis, necroptosis, pyroptosis, and PANoptosis and interacts with molecules, such as receptor-interacting protein kinase 3 (RIPK3), to influence cell fate under various pathological conditions. It plays a crucial role in regulating PCD during infections, inflammatory and neurological diseases, cancers, and other conditions, affecting disease onset and progression. Targeting ZBP1-associated PCD may represent a viable therapeutic strategy for related pathological conditions. This review comprehensively summarizes the regulatory functions of ZBP1 in PCD and its interactions with several closely associated signaling molecules and delineates the diseases linked to ZBP1-mediated PCD, along with the potential therapeutic implications of ZBP1 in these contexts. Ongoing research on ZBP1 is being refined across various disease models, and these advancements may provide novel insights for studies focusing on PCD, potentially leading to new therapeutic options for related diseases.


Result Analysis
Print
Save
E-mail