1.Role of cellular autophagy in cerebral ischemic injury and the regulatory mechanism of traditional Chinese medicine
Panpan ZHOU ; Yinglin CUI ; Wentao ZHANG ; Shurui WANG ; Jiahui CHEN ; Tong YANG
Chinese Journal of Tissue Engineering Research 2025;29(8):1650-1658
BACKGROUND:Studies have shown that ischemia-induced cellular autophagy dysfunction is a key factor in brain injury.Autophagy related genes 6(ATG6),microtubule-associated protein 1 light chain(LC3),p62,and other autophagy key proteins are involved in the processes such as neuronal axonal degeneration,death,and intracellular homeostasis maintenance,playing an important role in the recovery of neural function. OBJECTIVE:To review the research progress in the role of cellular autophagy in cerebral ischemic injury and the regulatory mechanism of traditional Chinese medicine. METHODS:The first author used"ischemic stroke,brain tissue injury,cellular autophagy,signaling pathways,traditional Chinese medicine compounds,terpenoids,alkaloids,flavonoids,saponins,lignans,phthalates"as Chinese and English keywords respectively to search for literature on autophagy,cerebral ischemic injury,and the regulatory mechanisms of traditional Chinese medicine from China National Knowledge Infrastructure(CNKI)and PubMed databases from January 2016 to February 2024.Literature that is not highly relevant,repetitive,or outdated was excluded.A total of 1 746 relevant literature were retrieved,and 92 articles were ultimately included. RESULTS AND CONCLUSION:Numerous studies have confirmed that autophagy plays an important role in cerebral ischemic injury.Moderate autophagy can promote cell survival,while excessive autophagy exacerbates brain injury.Traditional Chinese medicine can regulate the expression of autophagy related proteins,inhibit neuronal necrosis and apoptosis,and exert neuroprotective effects at different stages of cerebral ischemia by regulating signaling pathways such as PI3K/Akt/mTOR,AMPK-mTOR,and mitogen activated protein kinase.
2.Mitophagy regulates bone metabolism
Hanmin ZHU ; Song WANG ; Wenlin XIAO ; Wenjing ZHANG ; Xi ZHOU ; Ye HE ; Wei LI
Chinese Journal of Tissue Engineering Research 2025;29(8):1676-1683
BACKGROUND:In recent years,numerous studies have shown that autophagy and mitophagy play an important role in the regulation of bone metabolism.Under non-physiological conditions,mitophagy breaks the balance of bone metabolism and triggers metabolism disorders,which affect osteoblasts,osteoclasts,osteocytes,chondrocytes,bone marrow mesenchymal stem cells,etc. OBJECTIVE:To summarize the mechanism of mitophagy in regulating bone metabolic diseases and its application in clinical treatment. METHODS:PubMed,Web of Science,CNKI,WanFang and VIP databases were searched by computer using the keywords of"mitophagy,bone metabolism,osteoblasts,osteoclasts,osteocytes,chondrocytes,bone marrow mesenchymal stem cells"in English and Chinese.The search time was from 2008 to 2023.According to the inclusion criteria,90 articles were finally included for review and analysis. RESULTS AND CONCLUSION:Mitophagy promotes the generation of osteoblasts through SIRT1,PINK1/Parkin,FOXO3 and PI3K signaling pathways,while inhibiting osteoclast function through PINK1/Parkin and SIRT1 signaling pathways.Mitophagy leads to bone loss by increasing calcium phosphate particles and tissue protein kinase K in bone tissue.Mitophagy improves the function of chondrocytes through PINK1/Parkin,PI3K/AKT/mTOR and AMPK signaling pathways.Modulation of mitophagy shows great potential in the treatment of bone diseases,but there are still some issues to be further explored,such as different stages of drug-activated mitophagy,and the regulatory mechanisms of different signaling pathways.
3.Three-dimensional finite element analysis of anterior femoral notching during total knee arthroplasty at different bone strengths
Jinhai ZHOU ; Jiangwei LI ; Xuquan WANG ; Ying ZHUANG ; Ying ZHAO ; Yuyong YANG ; Jiajia WANG ; Yang YANG ; Shilian ZHOU
Chinese Journal of Tissue Engineering Research 2025;29(9):1775-1782
BACKGROUND:Periprosthetic fracture of the femoral of the knee after total knee arthroplasty is one of the common complications,and there is a lack of biomechanical research on the periprosthetic fractures of the femoral of the knee under different bone strength conditions.The three-dimensional finite element analysis can provide a biomechanical basis for clinical practice. OBJECTIVE:To investigate the biomechanical changes of anterior femoral notching after total knee arthroplasty under different bone strengths,and to provide a mechanical basis for the clinical prevention of supracondylar femoral periprosthetic fractures after knee arthroplasty. METHODS:The femoral CT data of healthy adults were obtained,and the three-dimensional model of femoral lateral replacement of the knee joint was established by Mimics,Geomagic studio,and Solidworks software.Anterior femoral notching models of different depths were constructed,and the models were imported into ANSYS software to analyze the changes of biological stress on the femoral condyle with different bone strengths and different anterior femoral notching depths.The stress changes of the femoral anterior condyle section after and before the filling of anterior femoral notching with bone cement were analyzed. RESULTS AND CONCLUSION:(1)Under any bone strength,the supracondylar stress increased with the depth of anterior femoral notching.In normal bone conditions,there was a stress abrupt change point when the anterior femoral notching depth was between 3 mm and 4 mm.In the case of osteoporosis,there was a stress abrupt point when the anterior femoral notching depth was between 2 mm and 3 mm.(2)When anterior femoral notching occurred during knee arthroplasty and the depth exceeded the thickness of the bone cortex,the supracondylar stress of the femoral gradually increased as the bone strength decreased.(3)The stress of the anterior femoral condyle section decreased when the model with an anterior femoral notching depth of 3 mm was filled with bone cement.(4)The results show that anterior femoral notching should be avoided during knee arthroplasty,especially in patients with osteoporosis.If anterior femoral notching occurs during surgery,bone cement can be used to evenly fill the anterior femoral notching to reduce the supracondylar stress of the femur and reduce the incidence of periprosthetic fractures of the femoral joint
4.Application of time series and machine learning models in predicting the trend of sickness absenteeism among primary and secondary school students in Shanghai
WANG Zhengzhong, ZHANG Zhe, ZHOU Xinyi, YUAN Linlin, ZHAI Yani, SUN Lijing, LUO Chunyan
Chinese Journal of School Health 2025;46(3):426-430
Objective:
To analyze the temporal variation patterns of sickness absenteeism among primary and secondary school students in Shanghai, so as to explore models suitable for predicting peaks and intensity of absenteeism rates.
Methods:
The seasonal and trend decomposition using loess (STL) method was used to analyze the seasonal and long term trend changes in sickness absenteeism among primary and secondary school students from September 1 in 2010 to June 30 in 2018, in Shanghai. A hierarchical clustering method based on Dynamic Time Warping (DTW) was employed to classify absenteeism symptoms with similar temporal patterns. Based on historical data, the study constructed and evaluated different time series algorithms and machine learning models to optimize the accuracy of predicting the trend of sickness absenteeism.
Results:
During the research period, the average new absenteeism rate due to illness was 16.86 per 10 000 person day for every academic year, and the trend of sickness absenteeism exhibited both seasonality and a long term upward trend, reaching its highest point in the 2017 academic year (22.47 per 10 000 person day). The symptoms of absenteeism were divided into three categories: high incidence in winter and spring (respiratory symptoms, fever and general discomfort, etc.), high incidence in summer (eye symptoms, nosebleeds, etc.) and those without obvious seasonality (skin symptoms, accidental injuries, etc.).The constructed time series models effectively predicted the trend of absenteeism due to illness, although the accuracy of predicting peak intensity was relatively low. Among them, the multi layer perceptron (MLP) model performed the best, with an root mean squared error (RMSE) of 8.96 and an mean absolute error (MAE) of 4.37, reducing 36.51% and 39.02% compared to the baseline model.
Conclusion
Time series models and machine learning algorithms could effectively predict the trend of sickness absenteeism, and corresponding prevention and control measures can be taken for absenteeism caused by different symptoms during peak periods.
5.Analysis of the Diagnostic and Treatment Approach for Cough Variant Asthma Based on the Concept of "Wind Medicinal Opening Sweat Pores"
Xiaoqing ZHOU ; Jialing CHEN ; Linshui ZHOU ; Zhen WANG
Journal of Traditional Chinese Medicine 2025;66(8):800-803
Sweat pore serves as the central regulator for ascending, descending, exiting and entering of qi movement, the circulation of essence, blood, and body fluids, and the nourishment of zang-fu organs. Its proper function depends on maintaining smooth flow and avoiding stagnation. Cough variant asthma (CVA), in traditional Chinese medicine, falls under the "wind cough" category. The dysfunction of sweat pores' opening, closing, ascending, and descending is integral to the pathogenesis of CVA. This article focused on the dynamic changes in sweat pores' dysfunction throughout the progression of CVA, categorized into three stages,i.e. loss of pivot function, blockage of sweat pores, and lack of nourishment. The treatment approach centers on "wind medicinal opening sweat pores", so for the initial stage, the focus is on activating sweat pores and dispelling wind, diffusing the lungs and rectifying qi; for the progression stage, the strategy shifts to unblocking sweat pores and dispersing wind, clearing lung stagnation and resolving obstructions; for the resolution stage, the emphasis is on nourishing sweat pores and defending against wind, strengthening the lungs and consolidating the body's foundation. This approach provides a systematic approach to the clinical diagnosis and treatment of CVA.
6.Research Progress on the Correlation Between Mitophagy and Vascular Cognitive Impairment
Yan LIU ; Xingang DONG ; Xiaoyuan WANG ; Gege QI ; Yiqin REN ; Lianpeng ZHOU ; Hui LI ; Suqing ZHANG ; Weifeng LI
Medical Journal of Peking Union Medical College Hospital 2025;16(2):338-349
Vascular cognitive impairment (VCI), caused by cerebrovascular dysfunction, severely impacts the quality of life in the elderly population, yet effective therapeutic approaches remain limited. Mitophagy, a selective mitochondrial quality-control mechanism, has emerged as a critical focus in neurological disease research. Accumulating evidence indicates that mitophagy modulates oxidative stress, neuroinflammation, and neuronal apoptosis. Key signaling pathways associated with mitophagy—including PINK1/Parkin, BNIP3/Nix, FUNDC1, PI3K/Akt/mTOR, and AMPK—have been identified as potential therapeutic targets for VCI. This review summarizes the mechanistic roles of mitophagy in VCI pathogenesis and explores emerging therapeutic strategies targeting these pathways, aiming to provide novel insights for clinical intervention and advance the development of effective treatments for VCI.
7.Mechanism of Congrong Zonggan Capsules in Improving Neuroinflammation and Cognitive Impairment in 5×FAD Mice Based on NF-κB/NLRP3 Signaling Pathway
Yanru ZHOU ; Xinru GU ; Yuru LIU ; Shun ZHANG ; Yaozhong LYU ; Zhenzhong WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):130-138
ObjectiveTo investigate the effects of Congrong Zonggan capsules (CRZG) on cognitive impairment in the Alzheimer's disease (AD) model of mice and its related mechanisms. MethodsSPF grade 4-week-old 5×FAD mice were divided into a model group, low-dose CRZG (0.819 g·kg-1) and high-dose CRZG (1.638 g·kg-1) groups, and Donepezilepezil hydrochloride group (2 mg·kg-1), with eight mice in each group. Eight C57 mice with the same background were set as the normal group. After one week of adaptive feeding, mice were orally administered continuously for six months. On the 5th month of drug administration, Y maze, new object recognition, and Morris water maze tests were conducted separately. After administration, mouse brain tissue was taken, and the levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in brain tissue were detected by enzyme-linked immunosorbent assay (ELISA). Immunofluorescence (IF) was used to detect the expression of small glial cell markers Iba1, astrocyte markers GFAP, and amyloid protein 1-42 (Aβ1-42) in the hippocampus of the brain tissue. The hematoxylin-eosin (HE) staining was used to detect pathological changes in the hippocampus of brain tissue. Western blot was used to detect the expression of nuclear factor-κB (NF-κB) p65, NOD-like receptor protein 3 (NLRP3), cleaved Caspase-1, apoptosis-associated speck-like protein containing a CARD (ASC), and other proteins in the brain tissue. ResultsCompared with those in the normal group, the mice in the model group had obvious cognitive impairment. The spontaneous alternation rate of the Y maze was decreased, and the discrimination index of novel object recognition was decreased significantly (P<0.01). The escape latency in the water maze was shortened significantly (P<0.01). The contents of IL-6 and TNF-α in brain tissue were increased. The fluorescence levels of Iba1 and Aβ1-42 in the hippocampus were significantly increased (P<0.01). There was a significant increase in neuronal lesions, neuronal atrophy, loose arrangement of tissue structure, and abnormal erythrocyte aggregation in the hippocampus. The protein expressions of p-NF-κB p65/NF-κB p65, cleaved Caspase-1, ASC, IL-6, and IL-1β were significantly increased (P<0.05, P<0.01). Compared with the model group, the spontaneous alternation rate and discrimination index of the high-dose CRZG group were increased significantly (P<0.01), and the escape latency was shortened significantly (P<0.05, P<0.01). The content of IL-6 decreased in the brain, and that of TNF-α dropped significantly (P<0.01). The expression of Iba1 protein and Aβ1-42 in the hippocampus decreased significantly (P<0.05, P<0.01). The hippocampal neurons were densely arranged, and the pyramidal nuclei were clear and centered. The abnormal aggregation of red blood cells was alleviated. The value of p-NF-κB/NF-κB proteins and the expression of ASC, cleaved Caspase-1, IL-6, and IL-1β were significantly decreased (P<0.05, P<0.01). ConclusionCRZG can effectively improve cognitive impairment in 5×FAD mice with Alzheimer's disease, and its mechanism may be related to the regulation of the NF-κB/NLRP3 pathway to reduce the abnormal activation of microglia and inhibit neuroinflammation.
8.Mechanism of Fibrinogen Overexpression in Influencing Coronary Heart Disease with Syndrome of Blood Stasis in Rats Based on Mitochondrial Quality Control System
Manli ZHOU ; Liping WANG ; Weixiong JIAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):149-158
ObjectiveTo study the effect and mechanism of fibrinogen (Fib) overexpression on mitochondrial quality control system in the rat model of coronary heart disease with the syndrome of blood stasis. MethodsForty male SD rats were randomly assigned into normal, model, Fib, and empty vector (AAV) groups, with 10 rats in each group. The model, Fib, and AAV groups were fed with a high-fat diet adaptively and administrated with 3×106 U·kg-1 vitamin D3 powder by gavage after 7 days and 2×106 U·kg-1 vitamin D3 solution after 14 days. After being fed with a high-fat diet for 7 weeks, rats in each group received subcutaneous injection of isoproterenol (5 mg·kg-1) for 3 days. During the modeling period, rats in the normal group were fed with ordinary feed without any special treatment. The changes in blood lipid and hemorheological indexes of rats in each group were measured. The aorta tissue was stained with hematoxylin-eosin (HE), and the standard lead Ⅱ electrocardiograms (ECGs) of rats in each group were recorded. Enzyme-linked immunosorbent assay (ELISA) and real-time PCR were employed to verify the overexpression levels of Fib in the liver and plasma. Western blotting was employed to determine the protein levels of mitofusin 2 (Mfn2), optic atrophy protein 1 (OPA1), dynamin-related protein 1 (Drp1), phosphorylated adenosine monophosphate-activated protein kinase (p-AMPK)/adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ-coactivator-1α (PGC-1α), PTEN-induced putative kinase 1, and Parkin. Real-time PCR was employed to determine the mRNA levels of AMPK and PGC-1α in the myocardial tissue. The changes in levels of adenosine triphosphate (ATP) and adenosine monophosphate (AMP) in the myocardial tissue were determined by ELISA. ResultsCompared with the normal group, the other three groups showed elevated levels of total cholesterol and low-density lipoprotein cholesterol (P<0.01) and no significant changes in levels of triglyceride and high-density lipoprotein cholesterol. Compared with the model group, the Fib and AAV groups showed risen levels of total cholesterol (P<0.05, P<0.01). Compared with the normal group, the model and Fib groups presented increases in low shear viscosity and middle shear viscosity (P<0.05, P<0.01), and the Fib group showcased an increase in high shear viscosity (P<0.01). Compared with the model group, the Fib group showed increases in low shear viscosity, middle shear viscosity, and high shear viscosity (P<0.05, P<0.01). Compared with the Fib group, the AAV group demonstrated decreases in low shear viscosity, middle shear viscosity, and high shear viscosity (P<0.05, P<0.01). The normal group had an complete aortic structure with well arrangement of elastic fibers. In the model group, the vascular wall became thickened and the intima was rough with inflammatory infiltration. In the Fib group, the intima calcification formed a cavity structure and the intima was abnormally proliferated, while in the AAV group, the intima smooth muscle was slightly proliferated with local calcification. The ECG of the normal group indicated sinus rhythm, and that of the model group presented ST segment oblique elevation (>0.1 mV). The ECG of the Fib group presented characteristic ST segment arch back elevation with T-wave towering, and that of the AAV group presented ST segment oblique elevation. Compared with the normal group, the model and Fib groups showed elevations in levels of liver Fib, plasma Fib, and liver Fibα mRNA (P<0.01), and the AAV group had risen levels of Fib and Fibα mRNA (P<0.01). Compared with the model group, the Fib group presented risen levels of liver Fib and Fibα mRNA (P<0.01). Compared with the Fib group, the AAV group presented decreases in levels of liver Fib, plasma Fib, and liver Fibα mRNA (P<0.01). Compared with the normal group, the other three groups had down-regulated protein and mRNA levels of Mfn2, OPA1, PINK1, Parkin, p-AMPK/AMPK, and PGC-1α (P<0.05, P<0.01) and up-regulated protein levels of Drp1 (P<0.01). Compared with those in the model group, the mRNA and protein levels of Mfn2, OPA1, PINK1, Parkin, p-AMPK/AMPK, and PGC-1α were all down-regulated (P<0.05, P<0.01) and the protein level of Drp1 was up-regulated (P<0.01) in the Fib group. Compared with the Fib group, the AAV group showed differences in protein levels of OPA1, PGC-1α, Parkin, and Drp1 (P<0.05, P<0.01) and an increasing trend in the mRNA levels of AMPK and PGC-1α with no significant difference. Compared with the normal group, the other three groups had elevated levels of ATP in the myocardial tissue (P<0.01). Compared with the model group, the Fib group showed elevated levels of ATP and AMP (P<0.01). Compared with the Fib group, the AAV group exhibited lowered levels of ATP and AMP (P<0.01). ConclusionFib can achieve the overexpression effect in the rat model of coronary heart disease with the syndrome of blood stasis. At the same time, the overexpression of Fib can induce the damage of the mitochondrial quality control system in the myocardial tissue, inhibit mitochondrial dynamics and mitochondrial biosynthesis, and down-regulate mitochondrial autophagy, thereby aggravating myocardial injury in the rat model.
9.Clinical Safety Monitoring of 3 035 Cases of Juvenile Feilike Mixture After Marketing in Hospital
Jian ZHU ; Zhong WANG ; Jing LIU ; Jun LIU ; Wei YANG ; Yanan YU ; Hongli WU ; Sha ZHOU ; Zhiyu PAN ; Guang WU ; Mengmeng WU ; Zhiwei JING
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):194-200
ObjectiveTo explore the clinical safety of Feilike Mixture (FLK) in the real world. MethodsThe safety of all children who received FLK from 29 institutions in 12 provinces between January 21,2021 and December 25,2021 was evaluated through prospective centralized surveillance and a nested case control study. ResultsA total of 3 035 juveniles were included. There were 29 research centers involved,which are distributed across 12 provinces,including one traditional Chinese medicine (TCM) hospital and 28 general hospitals. The average age among the juveniles was (4.77±3.56) years old,and the average weight was (21.81±12.97) kg. Among them,119 cases (3.92%) of juveniles had a history of allergies. Acute bronchitis was the main diagnosis for juveniles,with 1 656 cases (54.46%). FLK was first used in 2 016 cases (66.43%),and 142 juvenile patients had special dosages,accounting for 4.68%. Among them,92 adverse drug reactions (ADRs) occurred,including 73 cases of gastrointestinal system disorders,10 cases of metabolic and nutritional disorders,eight cases of skin and subcutaneous tissue diseases,two cases of vascular and lymphatic disorders,and one case of systemic diseases and various reactions at the administration site. The manifestations of ADRs were mainly diarrhea,stool discoloration,and vomiting,and no serious ADRs occurred. The results of multi-factor analysis indicated that special dosages (the use of FLK)[odds ratio (OR) of 2.642, 95% confidence interval (CI) of 1.105-6.323],combined administration: spleen aminopeptide (OR of 4.978, 95%CI of 1.200-20.655),and reason for combined administration: anti-infection (OR of 1.814, 95%CI of 1.071-3.075) were the risk factors for ADRs caused by FLK. Conclusion92 ADRs occurred among 3 035 juveniles using FLK. The incidence of ADRs caused by FLK was 3.03%,and the severity was mainly mild or moderate. Generally,the prognosis was favorable after symptomatic treatment such as drug withdrawal or dosage reduction,suggesting that FLK has good clinical safety.
10.Analysis of Differences in Secondary Metabolites Between Dendrobium nobile Bionic Wild Cultivated on Epiphytic Stones and Trees Based on Widely Targeted Metabolomics
Yifan SHI ; Changqing ZHOU ; Jiaojiao WANG ; Lin CHEN ; Hongping CHEN ; Fu WANG ; Yuan HU ; Youping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(10):218-224
ObjectiveTo explore the differences in the accumulation of secondary metabolites of Dendrobium nobile cultivated on epiphytic stones and trees, so as to elucidate the scientific connotation of "only those that grow on stones has superior quality", and provide a direction for the cultivation and quality evaluation of D. nobile. MethodsUltra-performance liquid chromatography-triple quadrupole/linear ion trap mass spectrometry(UPLC-QTRAP-MS/MS)-based widely targeted metabolomics was used to detect the metabolites of D. nobile cultivated on epiphytic stones and trees. And the combination of principal component analysis(PCA), hierarchical cluster analysis(HCA), and orthogonal partial least squares-discriminant analysis(OPLS-DA) was performed for multivariate statistical analysis of metabolites. Differential metabolites were screened by variable importance in the projection(VIP) value≥1 and log2fold change(FC)≥1 or ≤-1, and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analysis was conducted. ResultsA total of 1 267 metabolites were identified in the stems of D. nobile from the two cultivation modes, dominated by flavonoids(292), phenolic acids(284), and alkaloids(189). Through OPLS-DA screening, 473 differential metabolites were obtained. Compared to epiphytic tree-cultivated D. nobile, epiphytic stone-cultivated D. nobile exhibited upregulation of flavonoids, phenolic acids, alkaloids, lignans and coumarins, while quinones and terpenoids were down-regulated. The differential metabolites mainly included flavonoid glycosides and alkaloids, and these differential metabolites significantly contributed to characterizing the two cultivation patterns. KEGG enrichment analysis revealed significant enrichment in pathways of flavone and flavonol biosynthesis, flavonoid biosynthesis, tyrosine metabolism, and phenylalanine metabolism in epiphytic stone-cultivated D. nobile. ConclusionEpiphytic stone cultivation is beneficial for the accumulation of phenolic acids, flavonoids, and alkaloids in D. nobile, indicating that the "only those that grow on stones has superior quality" documented in the materia medica has certain scientific basis, and the findings also provide a reference for quality evaluation and discrimination research between epiphytic stone and tree cultivated D. nobile.


Result Analysis
Print
Save
E-mail