1.Protective Effect of Taohong Siwutang on Cerebral Ischemia-reperfusion Injury Based on A1/A2 Phenotype Transformation of Astrocytes Mediated by JAK2/STAT3 Pathway
Huifang WANG ; Xinru CHEN ; Mengyuan CHEN ; Xian ZHOU ; Lan HAN ; Weidong CHEN ; Zhaojie JI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):25-34
ObjectiveTo investigate whether the effect of Taohong Siwutang on cerebral ischemia-reperfusion (CIRI) injury in rats is related to the regulation of astrocyte polarization and explore the related mechanism. MethodsEighty-four male SD rats were randomly assigned to the following groups: A sham operation group, a model group, Taohong Siwutang treatment groups (low dose, medium dose, and high dose), ligustrazine phosphate tablet (LPT) group, and AG490 group. All groups, except for the sham operation group, underwent middle cerebral artery occlusion/reperfusion (MCAO/R) modeling and were treated for seven days. The neurological impairment was evaluated using the Longa score. The volume of cerebral infarction was assessed through 2,3,5-triphenyltetrazolium chloride (TTC) staining. Real-time fluorescent quantitative polymerase chain reaction (Real-time PCR) and Western blot analyses were performed to analyze the mRNA and protein expression levels of cortical complement 3 (C3), S100 calcium-binding protein A10 (S100A10), Janus kinase 2 (JAK2), and signal transducer and activator of transcription 3 (STAT3). Additionally, protein expression levels of vascular endothelial growth factor-A (VEGF-A) were assessed, and the mRNA expression levels of inflammatory factors, including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), were evaluated. Glial fibrillary acidic protein (GFAP) and C3, S100A10 and Co-localization was detected via immunofluorescence double staining. Lastly, VEGF expression levels were measured using enzyme-linked immunosorbent assay (ELISA). ResultsCompared with the sham operation group, the model group showed a significant increase in cerebral infarction volume and neurological impairment (P<0.01). C3 protein levels were elevated, while S100A10 levels were decreased. Pathway-related markers were significantly upregulated (P<0.05, P<0.01), and VEGF-A protein levels were significantly reduced (P<0.01). The mRNA expression of inflammatory factors was significantly upregulated (P<0.01). Co-localization analysis showed significantly increased GFAP and C3 fluorescence intensity (P<0.01) and greatly decreased GFAP and S100A10 fluorescence intensity (P<0.01). Additionally, VEGF content was significantly elevated (P<0.01). Compared with the model group, medium- and high-dose Taohong Siwutang and LPT groups exhibited a significant reduction in cerebral infarction volume and neurological impairment (P<0.01). Groups treated with low, medium, and high doses of Taohong Siwutang and LPT group exhibited a decrease in C3 protein expression levels and an increase in S100A10 expression levels (P<0.01). In the high-dose Taohong Siwutang and AG490 groups, both protein and mRNA expression of C3 and pathway-related markers were significantly downregulated (P<0.05, P<0.01), while S100A10 expression and VEGF-A protein levels were significantly increased (P<0.01). Additionally, the mRNA expression levels of inflammatory factors were significantly reduced (P<0.01). The co-localization fluorescence intensity of GFAP and C3 significantly decreased (P<0.01), while that of GFAP and S100A10 greatly increased (P<0.01). Furthermore, VEGF content exhibited a marked elevation (P<0.01). ConclusionTaohong Siwutang exerts a protective effect in rats with cerebral CIRI injury. The underlying mechanism is associated with the downregulation of the JAK2/STAT3 signaling pathway, promotion of A2-type astrocyte polarization, reduction of inflammatory factor release, and enhancement of VEGF production.
2.Protective Effect of Taohong Siwutang on Cerebral Ischemia-reperfusion Injury Based on A1/A2 Phenotype Transformation of Astrocytes Mediated by JAK2/STAT3 Pathway
Huifang WANG ; Xinru CHEN ; Mengyuan CHEN ; Xian ZHOU ; Lan HAN ; Weidong CHEN ; Zhaojie JI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(7):25-34
ObjectiveTo investigate whether the effect of Taohong Siwutang on cerebral ischemia-reperfusion (CIRI) injury in rats is related to the regulation of astrocyte polarization and explore the related mechanism. MethodsEighty-four male SD rats were randomly assigned to the following groups: A sham operation group, a model group, Taohong Siwutang treatment groups (low dose, medium dose, and high dose), ligustrazine phosphate tablet (LPT) group, and AG490 group. All groups, except for the sham operation group, underwent middle cerebral artery occlusion/reperfusion (MCAO/R) modeling and were treated for seven days. The neurological impairment was evaluated using the Longa score. The volume of cerebral infarction was assessed through 2,3,5-triphenyltetrazolium chloride (TTC) staining. Real-time fluorescent quantitative polymerase chain reaction (Real-time PCR) and Western blot analyses were performed to analyze the mRNA and protein expression levels of cortical complement 3 (C3), S100 calcium-binding protein A10 (S100A10), Janus kinase 2 (JAK2), and signal transducer and activator of transcription 3 (STAT3). Additionally, protein expression levels of vascular endothelial growth factor-A (VEGF-A) were assessed, and the mRNA expression levels of inflammatory factors, including interleukin-6 (IL-6), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α), were evaluated. Glial fibrillary acidic protein (GFAP) and C3, S100A10 and Co-localization was detected via immunofluorescence double staining. Lastly, VEGF expression levels were measured using enzyme-linked immunosorbent assay (ELISA). ResultsCompared with the sham operation group, the model group showed a significant increase in cerebral infarction volume and neurological impairment (P<0.01). C3 protein levels were elevated, while S100A10 levels were decreased. Pathway-related markers were significantly upregulated (P<0.05, P<0.01), and VEGF-A protein levels were significantly reduced (P<0.01). The mRNA expression of inflammatory factors was significantly upregulated (P<0.01). Co-localization analysis showed significantly increased GFAP and C3 fluorescence intensity (P<0.01) and greatly decreased GFAP and S100A10 fluorescence intensity (P<0.01). Additionally, VEGF content was significantly elevated (P<0.01). Compared with the model group, medium- and high-dose Taohong Siwutang and LPT groups exhibited a significant reduction in cerebral infarction volume and neurological impairment (P<0.01). Groups treated with low, medium, and high doses of Taohong Siwutang and LPT group exhibited a decrease in C3 protein expression levels and an increase in S100A10 expression levels (P<0.01). In the high-dose Taohong Siwutang and AG490 groups, both protein and mRNA expression of C3 and pathway-related markers were significantly downregulated (P<0.05, P<0.01), while S100A10 expression and VEGF-A protein levels were significantly increased (P<0.01). Additionally, the mRNA expression levels of inflammatory factors were significantly reduced (P<0.01). The co-localization fluorescence intensity of GFAP and C3 significantly decreased (P<0.01), while that of GFAP and S100A10 greatly increased (P<0.01). Furthermore, VEGF content exhibited a marked elevation (P<0.01). ConclusionTaohong Siwutang exerts a protective effect in rats with cerebral CIRI injury. The underlying mechanism is associated with the downregulation of the JAK2/STAT3 signaling pathway, promotion of A2-type astrocyte polarization, reduction of inflammatory factor release, and enhancement of VEGF production.
3.Mechanism of 1,25(OH)2D3 improving liver inflammation in a rat model of nonalcoholic steatohepatitis induced by choline-deficient L-amino acid-defined diet
Haiyang ZHU ; Jingshu CUI ; Liu YANG ; Mengting ZHOU ; Jian TONG ; Hongmei HAN
Journal of Clinical Hepatology 2025;41(2):254-262
ObjectiveTo investigate the effect of 1,25(OH)2D3 on the level of peroxisome proliferator-activated receptor-γ (PPAR-γ) in the liver, the phenotype of hepatic macrophages, and liver inflammation in a rat model of nonalcoholic steatohepatitis (NASH), as well as the mechanism of 1,25(OH)2D3 improving liver inflammation. MethodsAfter 1 week of adaptive feeding, 24 specific pathogen-free Wistar rats were randomly divided into normal group [choline-supplemented L-amino acid-defined (CSAA) diet], normal+1,25(OH)2D3 group [CSAA diet+1,25(OH)2D3], model group [choline-deficient L-amino acid-defined diet (CDAA) diet], and model+1,25(OH)2D3 group [CDAA diet+1,25(OH)2D3], with 6 rats in each group. The dose of 1,25(OH)2D3 was 5 μg/kg for intraperitoneal injection twice a week for 12 weeks. The serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were measured, liver histopathology was observed, and SAF score was assessed. M1 hepatic macrophages and M2 hepatic macrophages were measured to analyze in the change in the phenotype of hepatic macrophages, and ELISA was used to measure the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-4 (IL-4), and interleukin-10 (IL-10) in liver tissue, and qPCR was used to measure the mRNA level of PPAR-γ. The two-factor analysis of variance was use for comparison between groups, and the least significant difference t-test was used for further comparison; the Pearson method was used for correlation analysis. ResultsCompared with the normal group, the model rats with CDAA diet-induced NASH had significant increases in the serum levels of AST and ALT (P=0.019 and P<0.001), the SAF score of liver histopathology (P<0.001), the level of M1 hepatic macrophages (P<0.001), and the ratio of M1 and M2 hepatic macrophages (P<0.001), as well as a significant increase in the level of TNF-α (P<0.001) and a significant reduction in the level of IL-4 in liver tissue (P=0.025). The 1,25(OH)2D3 group had significant reductions in the serum levels of ALT (P<0.001), the SAF score of liver histopathology (P<0.001), the level of M1 hepatic macrophages (P<0.001), and the ratio of M1 and M2 hepatic macrophages (P=0.001), the level of IL-1β (P<0.001) and a significant increase in the level of M2 hepatic macrophages (P=0.017), the level of IL-10 (P=0.039), the level of IL-4 (P<0.001), the level of PPAR-γ (P=0.016). There were significant interactions between CDAA diet-induced NASH model and 1,25(OH)2D3 in serum the levels of AST and ALT (P=0.007 and P=0.008), the SAF scores of liver histopathology (P<0.001), the level of M1 hepatic macrophages (P<0.001), the level of M2 hepatic macrophages (P=0.008), the ratio of M1 and M2 of hepatic macrophages (P=0.005), the level of TNF-α (P<0.001), the level of IL-10 (P=0.038), the level of IL-4 (P<0.001) and the level of PPAR-γ (P=0.009). The correlation analysis showed that PPAR-γ was negatively correlated with the ratio of M1 and M2 hepatic macrophages (r=-0.415, P=0.044) and was positively correlated with M2 hepatic macrophages (r=0.435, P=0.033), IL-10 (r=0.433, P=0.035), and IL-4 (r=0.532, P=0.007). ConclusionThis study shows that 1,25(OH)2D3 improves liver inflammation in NASH by activating PPAR-γ to regulate the phenotypic transformation of hepatic macrophages.
4.A three-party evolutionary game analysis of patient privacy protection in live surgery
Han TIAN ; Jinping WU ; Yan ZHANG ; Jianyu ZHOU
Chinese Medical Ethics 2025;38(1):123-130
With the rapid development of network technology, live surgery has become the new way of surgery teaching. However, the issue of patient privacy protection caused by live surgery has received widespread attention. Based on the evolutionary game theory, this paper constructed an evolutionary game model from the three-party perspectives of doctors, patients, and government and analyzed the game behaviors of the three parties in the process of live surgery. Matlab software was utilized to conduct dynamic simulation and numerical simulation analysis. It was found that the factors affecting the choice of doctors’ strategies included protection costs, the cost of privacy leakage, the benefits of protection, high-traffic benefits, and other aspects; the factors affecting the choice of patient strategies encompassed surgical costs, the risk of privacy leakage, additional benefits, and other aspects; the factors affecting the choice of government strategies embodied regulatory costs and the improvement of credibility. To realize a win-win situation among doctors, patients, and the government, the three parties need to work together to ensure that patient privacy is not violated and find a balance between expanding the influence of medical education and protecting patient privacy.
5.Construction of Multidimensional Evaluation System for Health Status in Modern China's Ideal Life
Rui XU ; Han ZHOU ; Zhong WANG ; Yongyan WANG
Journal of Traditional Chinese Medicine 2025;66(7):657-662
The evolving health demands of contemporary society urgently call for adaptive adjustments in health policies and a comprehensive enhancement of perspectives, horizons, and viewpoints. Grounded in the solid foundation of traditional Chinese culture, this paper proposed a multidimensional evaluation system for assessing the health status of modern China's ideal life. Drawing upon the philosophical insights of Confucianism, Daoism, Mohism, Song-Ming Neo-Confucianism, and their subsequent developments, as well as core cultural values such as harmony (和), happiness (福), and joy (乐), this system established a fundamental framework for evaluating health in modern ideal life. The framework consists of eight indices, i.e. harmony index, diligence index, peace of mind index, happiness index, compassion index, innovation index, fulfillment index, and adaptability index. The purpose of constructing this system is to comprehensively and deeply reflect the physical and mental characteristics and behavioral patterns of the Chinese population, and to provide a holistic evaluation framework for advancing the foundation of health in modern ideal life, offering solid scientific support for formulating health policies that align with China's national context.
6.Efficacy and Mechanism of Action of Ermiao Situ Decoction in Modulating JAK/STAT Pathway in Rats with Damp-heat Eczema
Kangning HAN ; Junjie HU ; Juan LI ; Min ZHANG ; Xian ZHOU ; Songlin LIU ; Xin CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):37-47
ObjectiveUltra performance liquid chromatography-quadrupole-time of flight tandem mass spectrometry (UPLC-Q-TOF-MS/MS) coupled with network pharmacology and molecular docking was utilized to explore the efficacy and mechanism of action of Ermiao Situ decoction on rats with damp-heat eczema. MethodsA rat model of damp-heat eczema was established by artificial climate chamber intervention combined with sensitization induction by dinitrochlorobenzene (DNCB), and it was randomly divided into the normal group, the model group, the medium- and high-dose groups of Ermiao Situ decoction (3.40 g·kg-1 and 6.80 g·kg-1), and the prednisone acetate group (2.51 mg·kg-1), with eight rats in each group, totalling 46 rats, of which six rats were tested with the drug-containing serum. The chemical analysis of drug-containing serum from rats was carried out by UPLC-Q-TOF-MS/MS, combined with network pharmacology for the prediction of key components, core targets, and signaling pathways, and molecular docking experiments were performed by CB-Dock2 online website. The pharmacological effects of Ermiao Situ decoction in the treatment of damp-heat eczema were investigated by epitaxial indexes combined with the pathologic tissue staining method. The serum levels of gastrin (GAS), interleukin-4 (IL-4), and interleukin-13 (IL-13) were measured by enzyme-linked immunosorbent assay (ELISA). Interleukin-6 (IL-6), Janus kinase 1 (JAK1), phosphorylated (p)-JAK1, signal transduction and activation of transcription factor 3 (STAT3), and p-STAT3 protein expression level was determined by Western bolt. ResultsA total of 19 active ingredients were detected in drug-containing serum samples of rats, which were predicted to act on 198 targets for the treatment of damp-heat eczema, among which the key ingredients included rhodopsin, huangpai alkaloids, and quercetin, and the main core targets included STAT3, tumor necrosis factor (TNF), and IL-6, which were mainly involved in the cancer signaling pathway, phosphatidylinositol 3-kinase (PI3K)/protein kinase (Akt) signaling pathway, T helper 17 (Th17) cell differentiation signaling pathway, and JAK/STAT signaling pathway. The molecular docking results suggested that the key components had strong binding activities with the core targets IL-6, JAK1, and STAT3 in the JAK/STAT signaling pathway. The results of animal experiments showed that compared with those in the normal group, rats in the model group were depressed. They had loose hair, loose stools, epidermal oozing, vesiculation, and generation of thick scabs in the form of scales, decreased body weight, increased anus temperature and water intake, and increased indexes of the spleen, thymus gland, and stomach (P<0.05, P<0.01), and the lesion tissue could be seen to be hyperkeratotic, with the aggregation of inflammatory cells and nonsignificant separation of epidermis and dermis. The gastric mucosa was thinned, deficient, and structurally disorganized, and obvious inflammatory cell aggregation was seen. The levels of GAS, IL-4, and IL-13 in serum were significantly reduced (P<0.05, P<0.01), and the protein expression levels of IL-6, JAK1, p-JAK1, and p-STAT3 in the lesion tissue were significantly increased (P<0.05, P<0.01). Compared with those in the model group, rats in each administration group had stable mental states, formed feces, a clean perianal area, and basically normal epidermis. Only a small amount of scaly scabs existed, and the rats had body weight increased, with decreased anal temperature and water intake, as well as decreased spleen, thymus, and gastric indexes (P<0.05, P<0.01). Epidermal thickness was decreased, and epidermal and dermal separation boundaries were obvious, but hyperkeratotic and accumulation of inflammatory cells could still be seen. The thickness of gastric mucosa increased, and the structure was restored to varying degrees. The levels of GAS, IL-4, and IL-13 content in the serum of rats were increased to varying degrees, and the protein expression levels of IL-6, JAK1, p-JAK1, and p-STAT3 in the dermal lesion tissue were significantly decreased (P<0.05, P<0.01). ConclusionErmiao Situ decoction may exert therapeutic effects on rats with damp-heat eczema by modulating the JAK/STAT signaling pathway.
7.Incidence and Risk Factors of Postoperative Neuropsychiatric Dysfunctions After Deep Brain Stimulation Surgery in Patients with Parkinson's Disease: A Prospective Cohort Study
Sining XIE ; Chenguan JIANG ; Xiangjiahui LI ; Ruquan HAN ; Zhou YANG ; Bingxin LI ; Lin SHI
Medical Journal of Peking Union Medical College Hospital 2025;16(2):300-306
To investigate the incidence of postoperative neuropsychic dysfunction (PND) in Parkinson's disease (PD) patients undergoing deep brain stimulation (DBS) and to analyze its influencing factors. A prospective study was conducted between January 2020 and December 2022, recruiting PD patients from the Functional Neurosurgery Outpatient Clinic of Beijing Tiantan Hospital, Capital Medical University. All patients were scheduled to undergo bilateral subthalamic nucleus (STN)-DBS surgery. Perioperative clinical data were collected, and PND (outcome measure) within 3 days postoperatively was assessed using the Montreal cognitive assessment (MoCA), mini-mental state examination (MMSE), Hamilton depression and anxiety scales, and 3-minute diagnostic interview for confusion assessment method (3D-CAM). Multivariate Logistic regression was used to analyze the influencing factors of PND. A total of 216 PD patients were enrolled. Within 3 days after DBS surgery, 77 patients (35.6%) developed PND, including 24 cases (31.2%) of depression or worsening depression, 16 cases (20.8%) of anxiety or worsening anxiety, 13 cases (16.9%) of cognitive decline, and 24 cases (31.2%) of delirium. Univariate analysis revealed that dural opening method, dural opening time, intraoperative improvement rate of the unified Parkinson's disease rating scale -Ⅲ (UPDRS-Ⅲ) score, and postoperative intracranial air volume were significantly different between PND and non-PND patients (all PD patients have a high incidence of PND after DBS surgery. Sex, postoperative intracranial air volume, and the degree of improvement in PD motor symptoms can influence the risk of PND. These findings highlight the importance of individualized management based on sex, improving surgical techniques, and enhancing monitoring of neuropsychiatric status to optimize the efficacy of DBS surgery.
8.Effect of optimized intense pulsed light on meibomian gland morphology and function in patients with meibomian gland dysfunction
Yifan ZHOU ; Pengfei ZHANG ; Lifeng LIU ; Xinhong HAN ; Chao WANG ; Limei LIU
International Eye Science 2025;25(6):968-974
AIM: To assess the impact of optimized pulsed technology(OPT)on the morphological and functional changes of meibomian glands in patients with meibomian gland dysfunction(MGD).METHODS: This prospective case-control study enrolled 60 MGD patients(60 right eyes)treated at Weifang Eye Hospital from September 2023 to February 2024. Patients were categorized into mild, moderate, and severe groups based on the extent of meibomian gland loss, with 20 cases(20 eyes)per group. Treatments consisted of bilateral OPT combined with meibomian gland massages, administered biweekly over four sessions. Ocular surface function indicators including the ocular surface disease index(OSDI), corneal fluorescein staining(CFS), non-invasive average tear break-up time(NIBUTav), and non-invasive tear meniscus height(NITMH), as well as meibomian gland function parameters such as meibomian gland expressibility score(MGES)and meibomian gland secretion score(MGYSS)were observed and recorded before treatment and at 3 mo after final treatment. Cellular-level assessments using in vivo confocal microscopy(IVCM)examined meibomian gland acinar unit density(MGAUD), inflammatory cell density(ICD), meibomian gland acinar longest diameter(MGALD)and meibomian gland acinar shortest diameter(MGASD).RESULTS: At baseline, no significant differences were found in NITMH across groups(P>0.05). Statistical significance were observed in NIBUTav, MGES, MGYSS, MGAUD, MGALD, and MGASD(all P<0.05). Compared to the mild group, the moderate and severe groups showed significant differences in OSDI, CFS, and ICD(all P<0.05), though no significant differences existed between moderate and severe groups(all P>0.05). At 3 mo after treatment, all groups showed no significant differences in NITMH(all P>0.05). All parameters improved significantly in the mild group(all P<0.05); all indicators improved in the moderate group(P>0.05), except for MGASD before and after treatment(all P<0.05); significant improvements were noted in OSDI, CFS, and NIBUTav in the severe group(all P<0.05), while MGES and MGYSS did not differ significantly(all P>0.05). IVCM parameters(MGAUD, ICD, MGALD, and MGASD)showed no significant change in the severe group(all P>0.05).CONCLUSION:OPT effectively enhances various ocular surface functions and improves gland expressibility and secretion quality in mild to moderate MGD cases, while also positively impacting certain cellular parameters. In severe cases, where most acinar functions are lost and structural reversibility is limited, OPT can still mitigate MGD symptoms and decelerate disease progression.
9.Effect of The Hydrophilic Amino Acids on Self-assembly Behavior of Short Bola-like Peptides
Xin-Xin GAO ; Yu HAN ; Yi-Lin ZHOU ; Xi-Ya CHEN ; Yu-Rong ZHAO
Progress in Biochemistry and Biophysics 2025;52(5):1290-1301
ObjectiveBola-like short peptides exhibit novel self-assembly properties due to the formation of peptide dimers via hydrogen bonding interactions between their C-terminals. In this configuration, hydrophilic amino acids are distributed at both terminals, making these peptides behave similarly to Bola peptides. The electrostatic repulsive interactions arising from the hydrophilic amino acids at each terminal can be neutralized, thereby greatly promoting the lateral association of β-sheets. Consequently, assemblies with significantly larger widths are typically the dominant nanostructures for Bola-like peptides. To investigate the effect of hydrophilic amino acids on the self-assembly behavior of Bola-like peptides, the peptides Ac-RI3-CONH2 and Ac-HI3-CONH2 were designed and synthesized using the Bola-like peptide Ac-KI3-CONH2 as a template. Their self-assembly behavior was systematically examined. MethodsAtomic force microscopy (AFM) and transmission electron microscopy (TEM) were employed to characterize the morphology and size of the assemblies. The secondary structures of the assemblies were analyzed using circular dichroism (CD) and Fourier transform infrared (FTIR) spectroscopy. Small-angle neutron scattering (SANS) was used to obtain detailed structural information at a short-length scale. Based on these experimental results, the effects of hydrophilic amino acids on the self-assembly behavior of Bola-like short peptides were systematically analyzed, and the underlying formation mechanism was explored. ResultsThe aggregation process primarily involved three steps. First, peptide dimers were formed through hydrogen bonding interactions between their C-terminals. Within these dimers, the hydrophilic amino acids K, R, and H were positioned at both terminals, enabling the peptides to self-assemble in a manner similar to Bola peptides. Next, β-sheets were formed via hydrogen bonding interactions along the peptide backbone. Finally, self-assemblies were generated through the lateral association of β-sheets. The results demonstrated that both Ac-KI3-CONH2 and Ac-RI3-CONH2 could self-assemble into double-layer nanotubes with diameters of approximately 200 nm. These nanotubes were formed by the edge fusion of helical ribbons, which initially emerged from twisted ribbons. Notably, the primary assemblies of these peptides exhibited opposite chirality: nanofibers formed by Ac-KI3-CONH2 displayed left-handed chirality, whereas those formed by Ac-RI3-CONH2 exhibited right-handed chirality. This reversal in torsional direction was primarily attributed to the different abilities of K and R to form hydrogen bonds with water. In contrast, Ac-HI3-CONH2 formed narrower twisted ribbons with a significantly reduced width of approximately 30 nm, which was attributed to the strong steric hindrance caused by the imidazole rings. The multilayer height of these ribbons was mainly due to the unique structure of the imidazole rings, which can function as both hydrogen bond donors and acceptors, thereby promoting aggregate growth in the vertical direction. ConclusionThe final morphology of the self-assemblies resulted from a delicate balance of various non-covalent interactions. By altering the types of hydrophilic amino acid residues in Bola-like short peptides, the relative strength of non-covalent interactions that drive assembly formation can be effectively regulated, allowing precise control over the morphology and chirality of the assemblies. This study provides a simple and effective approach for constructing diverse self-assemblies and lays a theoretical foundation for the development of functional biomaterials.
10.The bridging role of programmed cell death in association between periodontitis and rheumatoid arthritis
GE Ruiyang ; ZHOU Yingying ; MAO Haowei ; HAN Lei ; CUI Di ; YAN Fuhua
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(6):457-465
Periodontitis and rheumatoid arthritis (RA) are chronic inflammatory diseases that share similar inflammatory mechanisms and characteristics. Programmed cell death (PCD) has recently garnered attention for its crucial role in regulating inflammation and maintaining tissue homeostasis, as well as for its potential to link these two diseases. The various forms of PCD--including apoptosis, pyroptosis, and necroptosis--are closely controlled by signaling pathways such as Toll-like receptor 4 (TLR4) /NF-κB and MAPK. These pathways determine cell fate and influence inflammatory responses, tissue destruction, and repair, and they both play important roles in the pathogenesis of RA and periodontitis. In periodontitis, periodontal pathogens such as Porphyromonas gingivalis (P. gingivalis) and its virulence factors, including lipopolysaccharide (LPS), induce pyroptosis and necroptosis in immune cells such as macrophages via the TLR4/NF-κB pathway, which leads to an excessive release of pro-inflammatory cytokines such as interleukin (IL)-1β and tumor necrosis factor (TNF)-α. Concurrently, these pathogens inhibit the normal apoptotic process of immune cells, such as neutrophils, prolonging their survival, exacerbating immune imbalance, and aggravating periodontal tissue destruction. Similarly, in RA synovial tissue, fibroblast-like synoviocytes (FLS) acquire apoptosis resistance through signaling pathways such as the Bcl-2 family, JAK/STAT, and NF-κB, allowing for the consistent proliferation and secretion of matrix metalloproteinases and pro-inflammatory cytokines. Meanwhile, the continuous activation of pyroptotic pathways in neutrophils and macrophages results in the sustained release of IL-1β, further exacerbating synovial inflammation and bone destruction. Notably, dysregulated PCD fosters inter-organ crosstalk through shared inflammatory mediators and metabolic networks. Damage-associated molecular patterns (DAMPs) and cytokines that originate from periodontal lesions can spread systemically, influencing cell death processes in synovial and immune cells, thereby aggravating joint inflammation and bone erosion. By contrast, systemic inflammation in RA can upregulate osteoclastic activity or interfere with the normal apoptosis of periodontal cells via TNF-α and IL-6, ultimately intensifying periodontal immune imbalance. This review highlights the pivotal bridging role of PCD in the pathogenesis of both periodontitis and RA, providing a reference for therapeutic strategies that target cell death pathways to manage and potentially mitigate these diseases.


Result Analysis
Print
Save
E-mail