1.Self-degradable "gemini-like" ionizable lipid-mediated delivery of siRNA for subcellular-specific gene therapy of hepatic diseases.
Qiu WANG ; Bin WAN ; Yao FENG ; Zimeng YANG ; Dan LI ; Fan LIU ; Ya GAO ; Chang LI ; Yanhua LIU ; Yongbing SUN ; Zhonggui HE ; Cong LUO ; Jin SUN ; Qikun JIANG
Acta Pharmaceutica Sinica B 2025;15(6):2867-2883
Tailored lipid nanoparticles (LNPs)-mediated small interfering RNA (siRNA) nanomedicines show promise in treating liver disease, such as acute liver injury (ALI) and non-alcoholic steatohepatitis (NASH). However, constructing LNPs that address biosafety concerns, ensure efficient delivery, and target specific hepatic subcellular fractions has been challenging. To evade above obstacles, we develop three novel self-degradable "gemini-like" ionizable lipids (SS-MA, SS-DC, SS-MH) by incorporating disulfide bonds and modifying the length of ester bond and tertiary amino head. Our findings reveal that the disulfide-bond-bridged LNPs exhibit reduction-responsive drug release, improving both biosafety and siRNA delivery efficiency. Furthermore, the distance of ester bond and tertiary amino head significantly influences the LNPs' pK a, thereby affecting endosomal escape, hemolytic efficiency, absorption capacity of ApoE, uptake efficiency of hepatocytes and liver accumulation. We also develop the modified-mannose LNPs (M-LNP) to target liver macrophages specifically. The optimized M-MH_LNP@TNFα exhibits potential in preventing ALI by decreasing tumor necrosis factor α (TNFα) levels in the macrophages, while MH_LNP@DGAT2 could treat NASH by selectively degrading diacylglycerol O-acyltransferase 2 (DGAT2) in the hepatocytes. Our findings provide new insights into developing novel highly effective and low-toxic "gemini-like" ionizable lipids for constructing LNPs, potentially achieving more effective treatment for hepatic diseases.
2.A chemotherapy nano-booster unlocks wider therapeutic window for prostate cancer treatment.
Rui LIAO ; Yuequan WANG ; Ziqi LIN ; Yuting WANG ; Hongyuan ZHANG ; Qin CHEN ; Shenwu ZHANG ; Jin SUN ; Zhonggui HE ; Cong LUO
Acta Pharmaceutica Sinica B 2025;15(6):3273-3290
Clinical chemotherapy for prostate cancer is still compromised by high treatment thresholds and severe off-target toxicity of drugs. Given the limited progress in improving therapeutic outcomes and reducing toxicity with the existing toolbox, efforts to broaden the chemotherapeutic window are highly desired. Here, we discover that gossypol (GSP, a natural compound) dramatically enhances the chemosensitivity of cabazitaxel (CTX), even at previously ineffective concentrations. Based on this interesting finding, we exploit a carrier-free chemotherapeutic nano-booster for prostate cancer treatment, which is molecularly co-assembled by GSP and cabazitaxel (CTX). GSP not only readily forms nanoassembly with CTX, but also functions as a chemotherapeutic enhancer that unlocks an ultra-low-dose chemotherapeutic window. Not only that, precise dual-drug nanoassembly confers CTX a significantly larger maximum tolerable dose. As expected, the nano-booster exerts striking therapeutic benefits in mouse prostate tumor xenograft models. This study advances chemotherapeutic window expansion and self-sensitized chemotherapy toward clinical applicability.
3.Engineered platelet-derived exosomal spheres for enhanced tumor penetration and extended circulation in melanoma immunotherapy.
Jian ZHAO ; Xinyan LV ; Qi LU ; Kaiyuan WANG ; Lili DU ; Xiaoyuan FAN ; Fei SUN ; Fengxiang LIU ; Zhonggui HE ; Hao YE ; Jin SUN
Acta Pharmaceutica Sinica B 2025;15(7):3756-3766
Cells and exosomes derived from them are extensively used as biological carrier systems. Cells demonstrate superior targeting specificity and prolonged circulation facilitated by their rich array of surface proteins, while exosomes, due to their small size, cross barriers and penetrate tumors efficiently. However, challenges remain, cells' large size restricts tissue penetration, and exosomes have limited targeting accuracy and short circulation times. To address these challenges, we developed a novel concept termed exosomal spheres. This approach involved incorporating platelet-derived exosomes shielded with phosphatidylserine (PS) and linked via pH-sensitive bonds for drug delivery applications. The study demonstrated that, compared with exosomes, the exosomal spheres improved blood circulation through the upregulation of CD47 expression and shielding of phosphatidylserine, thereby minimizing immune clearance. Moreover, the increased expression of P-selectin promoted adhesion to circulating tumor cells, thereby enhancing targeting efficiency. Upon reaching the tumor site, the hydrazone bonds of exosome spheres were protonated in the acidic tumor microenvironment, leading to disintegration into uniform-sized exosomes capable of deeper tumor penetration compared to platelets. These findings suggested that exosome spheres addressed the challenges and offered significant potential for efficient and precise drug delivery.
4.Erratum: Author correction to "Structurally defined tandem-responsive nanoassemblies composed of dipeptide-based photosensitive derivatives and hypoxia-activated camptothecin prodrugs against primary and metastatic breast tumors" Acta Pharm Sin B 12 (2022) 952-966.
Mengchi SUN ; Hailun JIANG ; Tian LIU ; Xiao TAN ; Qikun JIANG ; Bingjun SUN ; Yulong ZHENG ; Gang WANG ; Yang WANG ; Maosheng CHENG ; Zhonggui HE ; Jin SUN
Acta Pharmaceutica Sinica B 2025;15(11):6091-6092
[This corrects the article DOI: 10.1016/j.apsb.2021.08.008.].
5.Traditional Chinese medicine-facilitated redox-labile paclitaxel dimer nanoprodrug for efficient chemoimmunotherapy.
Fan LI ; Wenrui WANG ; Weisheng XU ; WanYing LI ; Yudi LU ; Rui WANG ; Zhonggui HE ; Zhihui FENG ; Jiabing TONG ; Zhenbao LI
Journal of Pharmaceutical Analysis 2025;15(9):101348-101348
Various therapeuti modailities have been engineered for lung cancer treatment, but their clinic application is severely impeded by the poor therapy efficiency and immunosuppressive microenvironment. Herein, we fabricated a library of small molecule redox-labile nanoparticles (NPs) (i.e., diPTX-2C NPs, diPTX-2S NPs, and diPTX-2Se NPs) by the self-assembly of dimer paclitaxel (PTX) prodrug, and then utilized these NPs with the traditional Chinese medicine (TCM) Qi-Yu-San-Long-Fang (Q) for effective chemoimmunotherapy on Lewis lung carcinoma (LLC)-bearing mice models. Under the high concentration of glutathione (GSH) and H2O2, diPTX-2Se NPs could specifically release PTX in cancer cells and exert a higher selectivity and toxicity than normal cells. In LLC tumor-bearing mice, oral administration of Q not only effectively downregulated programmed death ligand-1 (PD-L1) expression, but also remodeled the immunosuppressive tumor immune microenvironment via the increase of CD4+ T and CD8+ T cell proportion and the repolarization of M2 into M1 macrophages in tumor tissues, collectively achieving superior synergistic treatment outcomes in combination with intravenous PTX prodrug NPs. Besides, we found that the combination regimen also demonstrated excellent chemoimmunotherapeutic performances on low-dose small established tumor and high-dose large established tumor models. This study may shed light on the potent utilization of Chinese and Western-integrative strategy for efficient tumor chemoimmunotherapy.
6.Structurally defined tandem-responsive nanoassemblies composed of dipeptide-based photosensitive derivatives and hypoxia-activated camptothecin prodrugs against primary and metastatic breast tumors.
Mengchi SUN ; Hailun JIANG ; Tian LIU ; Xiao TAN ; Qikun JIANG ; Bingjun SUN ; Yulong ZHENG ; Gang WANG ; Yang WANG ; Maosheng CHENG ; Zhonggui HE ; Jin SUN
Acta Pharmaceutica Sinica B 2022;12(2):952-966
Substantial progress in the use of chemo-photodynamic nano-drug delivery systems (nano-DDS) for the treatment of the malignant breast cancer has been achieved. The inability to customize precise nanostructures, however, has limited the therapeutic efficacy of the prepared nano-DDS to date. Here, we report a structurally defined tandem-responsive chemo-photosensitive co-nanoassembly to eliminate primary breast tumor and prevent lung metastasis. This both-in-one co-nanoassembly is prepared by assembling a biocompatible photosensitive derivative (pheophorbide-diphenylalanine peptide, PPA-DA) with a hypoxia-activated camptothecin (CPT) prodrug [(4-nitrophenyl) formate camptothecin, N-CPT]. According to computational simulations, the co-assembly nanostructure is not the classical core-shell type, but consists of many small microphase regions. Upon exposure to a 660 nm laser, PPA-DA induce high levels of ROS production to effectively achieve the apoptosis of normoxic cancer cells. Subsequently, the hypoxia-activated N-CPT and CPT spatially penetrate deep into the hypoxic region of the tumor and suppress hypoxia-induced tumor metastasis. Benefiting from the rational design of the chemo-photodynamic both-in-one nano-DDS, these nanomedicines exhibit a promising potential in the inhibition of difficult-to-treat breast tumor metastasis in patients with breast cancer.
7.Artificial tumor microenvironment regulated by first hemorrhage for enhanced tumor targeting and then occlusion for synergistic bioactivation of hypoxia-sensitive platesomes.
Wenhui TAO ; Dongyang ZHAO ; Guanting LI ; Lingxiao LI ; Songhao LI ; Hao YE ; Chutong TIAN ; Yutong LU ; Shuying LI ; Yinghua SUN ; Zhonggui HE ; Jin SUN
Acta Pharmaceutica Sinica B 2022;12(3):1487-1499
The unique characteristics of the tumor microenvironment (TME) could be exploited to develop antitumor nanomedicine strategies. However, in many cases, the actual therapeutic effect is far from reaching our expectations due to the notable tumor heterogeneity. Given the amplified characteristics of TME regulated by vascular disrupting agents (VDAs), nanomedicines may achieve unexpected improved efficacy. Herein, we fabricate platelet membrane-fusogenic liposomes (PML/DP&PPa), namely "platesomes", which actively load the hypoxia-activated pro-prodrug DMG-PR104A (DP) and physically encapsulate the photosensitizer pyropheophorbide a (PPa). Considering the different stages of tumor vascular collapse and shutdown induced by a VDA combretastatin-A4 phosphate (CA4P), PML/DP&PPa is injected 3 h after intraperitoneal administration of CA4P. First, CA4P-mediated tumor hemorrhage amplifies the enhanced permeation and retention (EPR) effect, and the platesome-biological targeting further promotes the tumor accumulation of PML/DP&PPa. Besides, CA4P-induced vascular occlusion inhibits oxygen supply, followed by photodynamic therapy-caused acute tumor hypoxia. This prolonged extreme hypoxia contributes to the complete activation of DP and then high inhibitory effect on tumor growth and metastasis. Thus, such a combining strategy of artificially-regulated TME and bio-inspired platesomes pronouncedly improves tumor drug delivery and boosts tumor hypoxia-selective activation, and provides a preferable solution to high-efficiency cancer therapy.
8.Emerging role of natural products in cancer immunotherapy.
Songtao DONG ; Xiangnan GUO ; Fei HAN ; Zhonggui HE ; Yongjun WANG
Acta Pharmaceutica Sinica B 2022;12(3):1163-1185
Cancer immunotherapy has become a new generation of anti-tumor treatment, but its indications still focus on several types of tumors that are sensitive to the immune system. Therefore, effective strategies that can expand its indications and enhance its efficiency become the key element for the further development of cancer immunotherapy. Natural products are reported to have this effect on cancer immunotherapy, including cancer vaccines, immune-check points inhibitors, and adoptive immune-cells therapy. And the mechanism of that is mainly attributed to the remodeling of the tumor-immunosuppressive microenvironment, which is the key factor that assists tumor to avoid the recognition and attack from immune system and cancer immunotherapy. Therefore, this review summarizes and concludes the natural products that reportedly improve cancer immunotherapy and investigates the mechanism. And we found that saponins, polysaccharides, and flavonoids are mainly three categories of natural products, which reflected significant effects combined with cancer immunotherapy through reversing the tumor-immunosuppressive microenvironment. Besides, this review also collected the studies about nano-technology used to improve the disadvantages of natural products. All of these studies showed the great potential of natural products in cancer immunotherapy.
9.A facile and universal method to achieve liposomal remote loading of non-ionizable drugs with outstanding safety profiles and therapeutic effect.
Shuang ZHOU ; Jinbo LI ; Jiang YU ; Liyuan YANG ; Xiao KUANG ; Zhenjie WANG ; Yingli WANG ; Hongzhuo LIU ; Guimei LIN ; Zhonggui HE ; Dan LIU ; Yongjun WANG
Acta Pharmaceutica Sinica B 2021;11(1):258-270
Liposomes have made remarkable achievements as drug delivery vehicles in the clinic. Liposomal products mostly benefited from remote drug loading techniques that succeeded in amphipathic and/or ionizable drugs, but seemed impracticable for nonionizable and poorly water-soluble therapeutic agents, thereby impeding extensive promising drugs to hitchhike liposomal vehicles for disease therapy. In this study, a series of weak acid drug derivatives were designed by a simplistic one step synthesis, which could be remotely loaded into liposomes by pH gradient method. Cabazitaxel (CTX) weak acid derivatives were selected to evaluate regarding its safety profiles, pharmacodynamics, and pharmacokinetics. CTX weak acid derivative liposomes were superior to Jevtana® in terms of safety profiles, including systemic toxicity, hematological toxicity, and potential central nerve toxicity. Specifically, it was demonstrated that liposomes had capacity to weaken potential toxicity of CTX on cortex and hippocampus neurons. Significant advantages of CTX weak acid derivative-loaded liposomes were achieved in prostate cancer and metastatic cancer therapy resulting from higher safety and elevated tolerated doses.
10.Pure photosensitizer-driven nanoassembly with core-matched PEGylation for imaging-guided photodynamic therapy.
Shenwu ZHANG ; Yuequan WANG ; Zhiqiang KONG ; Xuanbo ZHANG ; Bingjun SUN ; Han YU ; Qin CHEN ; Cong LUO ; Jin SUN ; Zhonggui HE
Acta Pharmaceutica Sinica B 2021;11(11):3636-3647
Pure drug-assembled nanomedicines (PDANs) are currently under intensive investigation as promising nanoplatforms for cancer therapy. However, poor colloidal stability and less tumor-homing ability remain critical unresolved problems that impede their clinical translation. Herein, we report a core-matched nanoassembly of pyropheophorbide a (PPa) for photodynamic therapy (PDT). Pure PPa molecules are found to self-assemble into nanoparticles (NPs), and an amphiphilic PEG polymer (PPa-PEG

Result Analysis
Print
Save
E-mail