1.Role of neutrophil in fungal keratitis
Junming YANG ; Yanting LUO ; Hong HE ; Xingwu ZHONG
International Eye Science 2025;25(2):230-234
Fungal keratitis represents a significant cause of blindness, with current therapeutic approaches yielding limited success. The disease's onset and progression are primarily driven by fungal virulence factors and the host's immune response. The innate immune system is the first to respond, with neutrophils playing a pivotal role in the antifungal defense. Although neutrophils are critical for pathogen clearance, their excessive or abnormal activation can lead to tissue damage, exacerbating the disease. Thus, elucidating the mechanisms underlying neutrophil activity in fungal keratitis is crucial for refining treatment strategies. This article aims to systematically review the principal antimicrobial mechanisms employed by neutrophils, including phagocytosis, degranulation, and the formation of neutrophil extracellular traps(NETs). Furthermore, it explores the crosstalk between neutrophils and macrophages, alongside their collective impact and underlying mechanisms in the context of fungal keratitis. Exploration of the mechanisms of fungal keratitis facilitates precise intervention and enhances the efficacy of treatment.
2.A new perspective on quality control of traditional Chinese medicine based on characteristics of "physical phase structure".
Zhong-Huan QU ; Yan-Jun YANG ; Bing YANG ; Ru-Yu SHI ; Mao-Mao ZHU ; Lu SUN ; Xiao-Bin JIA ; Liang FENG
China Journal of Chinese Materia Medica 2025;50(13):3579-3588
Quality control is a key link in the modernization process of traditional Chinese medicine(TCM). Studies have shown that the effects of active components in TCM depend on not only their chemical composition but also their suitable physical forms and states. The physical phase structures, such as micelles, vesicles, gels, and nanoparticles, can improve the solubility, delivery efficiency, and targeting precision of active components. These structures significantly enhance the pharmacological activity while reducing the toxicity and side effects, demonstrating functional activity surpassing that of active components and highlighting the key effects of "structures" on "functions" of active components. Taking the physical phase structure as a breakthrough point, this paper outlines the common types of TCM physical phase structures. Furthermore, this paper explores how to realize the quality upgrading of TCM through the precise regulation of physical phase structures based on the current applications and potential of TCM physical phase structures in processing to increase the efficacy and reduce the toxicity, compounding and decocting processes, drug delivery systems, and quality control, aiming to provide novel insights for the future quality control of TCM.
Quality Control
;
Drugs, Chinese Herbal/standards*
;
Medicine, Chinese Traditional/standards*
;
Humans
;
Drug Delivery Systems
3.Short-term effectiveness of edge-to-edge #-shaped suture for complete radial tear of lateral meniscus body.
Hehe ZHONG ; Jing CHEN ; Pengpeng SUN ; Dongfeng CAI ; Lidan YANG ; Huazhang XIONG ; Shuhong WU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(9):1165-1169
OBJECTIVE:
To investigate the surgical method and short-term effectiveness of arthroscopy edge-to-edge #-shaped suture in the treatment of the complete radial tear of the lateral meniscus body.
METHODS:
The clinical data of 13 patients with complete radial tear of lateral meniscus body between May 2020 and August 2023 were retrospectively analyzed. There were 10 males and 3 females, aged 15-38 years (mean, 24.2 years). There were 11 cases of acute injury and 2 cases of chronic injury, with time from injury to admission ranging from 2 days to 5 months. All patients had tenderness in the lateral joint space, and 2 patients with chronic injury had positive McMurray's sign. All patients were treated with arthroscopic edge-to-edge #-shaped suture technique. The knee joint activity and tenderness in the lateral joint space were detected, and the healing of the incision and the occurrence of complications were observed. X-ray films and MRI of the knee joint were performed to evaluate joint degeneration and meniscus healing. Lysholm score, International Knee Documentation Committee (IKDC) subjective score, Tegner score, and visual analogue scale (VAS) score were used to evaluate the functional recovery before and after operation.
RESULTS:
The operation time ranged from 46 to 100 minutes (mean, 80.08 minutes). All the incisions healed by first intention, and no complication such as intraoperative vascular and nerve injury or postoperative infection occurred. All 13 patients were followed up 20-59 months (mean, 29.3 months). All patients had no limitation of knee extension and flexion. One patient with chronic injury continued to have tenderness in the lateral space of the knee joint, while the remaining patients had no tenderness, swelling, and locking in the lateral space. Immediate postoperative MRI of knee joint showed continuous recovery of the lateral meniscus. At last follow-up, no degenerative changes were observed in X-ray films of knee joint. Except for 1 patient with chronic injury, the MRI of the other patients showed the healing performance after lateral meniscus suture. Lysholm score, IKDC subjective score, Tegner score, and VAS score all significantly improved when compared with those before operation (P<0.05).
CONCLUSION
The edge-to-edge #-shaped suture technique can effectively repair the complete radial tear of the lateral meniscus body, and the short-term effectiveness is satisfactory.
Humans
;
Male
;
Female
;
Adult
;
Tibial Meniscus Injuries/surgery*
;
Arthroscopy/methods*
;
Retrospective Studies
;
Adolescent
;
Young Adult
;
Suture Techniques
;
Treatment Outcome
;
Menisci, Tibial/surgery*
;
Sutures
;
Knee Joint/surgery*
;
Magnetic Resonance Imaging
4.Reduction in mitochondrial DNA methylation leads to compensatory increase in mitochondrial DNA content: novel blood-borne biomarkers for monitoring occupational noise.
Jia-Hao YANG ; Zhuo-Ran LI ; Zhuo-Zhang TAN ; Wu-Zhong LIU ; Qiang HOU ; Pin SUN ; Xue-Tao ZHANG
Environmental Health and Preventive Medicine 2025;30():40-40
BACKGROUND:
Prolonged occupational noise exposure poses potential health risks, but its impact on mitochondrial DNA (mtDNA) damage and methylation patterns remains unclear.
METHOD:
We recruited 306 factory workers, using average binaural high-frequency hearing thresholds from pure-tone audiometry to assess noise exposure. MtDNA damage was evaluated through mitochondrial DNA copy number (mtDNAcn) and lesion rate, and mtDNA methylation changes were identified via pyrophosphate sequencing.
RESULTS:
There was a reduction in MT-RNR1 methylation of 4.52% (95% CI: -7.43% to -1.62%) among workers with abnormal hearing, whereas changes in the D-loop region were not statistically significant (β = -2.06%, 95% CI: -4.44% to 0.31%). MtDNAcn showed a negative association with MT-RNR1 methylation (β = -0.95, 95% CI: -1.23 to -0.66), while no significant link was found with D-loop methylation (β = -0.05, 95% CI: -0.58 to 0.48). Mediation analysis indicated a significant increase in mtDNAcn by 10.75 units (95% CI: 3.00 to 21.26) in those with abnormal hearing, with MT-RNR1 methylation mediating 35.9% of this effect.
CONCLUSIONS
These findings suggest that occupational noise exposure may influence compensatory increases in mtDNA content through altered MT-RNR1 methylation.
Humans
;
DNA, Mitochondrial
;
DNA Methylation
;
Male
;
Adult
;
Noise, Occupational/adverse effects*
;
Middle Aged
;
Occupational Exposure/adverse effects*
;
Biomarkers/blood*
;
Female
5.Research progress on PD-1/PD-L1 inhibitors in neoadjuvant therapy for esophageal cancer
Liji CHEN ; Hongmei MA ; Shifa ZHANG ; Kaize ZHONG ; Dongbao YANG ; Jiuhe SUN ; Hongfeng LIU ; Ru SONG ; Jishan ZHANG ; Haibo CAI
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(05):714-721
Esophageal cancer is one of the malignant tumors that poses a threat to human health, with both high incidence and malignancy. Currently, surgery following neoadjuvant chemoradiotherapy is the standard treatment for locally advanced esophageal cancer; however, the long-term prognosis remains unsatisfactory. In recent years, inhibitors of programmed death protein-1 (PD-1) and its ligand (programmed death ligand-1, PD-L1) have achieved breakthrough progress in other solid tumors, and research on esophageal cancer is gradually being conducted. With the demonstration of good efficacy of PD-1/PD-L1 inhibitors in the first-line and second-line treatment of advanced unresectable esophageal cancer, their incorporation into neoadjuvant treatment regimens has become a hot topic. Therefore, this article reviews the mechanism of action of PD-1/PD-L1 inhibitors and their application in the neoadjuvant treatment of esophageal cancer.
6.A novel anti-ischemic stroke candidate drug AAPB with dual effects of neuroprotection and cerebral blood flow improvement.
Jianbing WU ; Duorui JI ; Weijie JIAO ; Jian JIA ; Jiayi ZHU ; Taijun HANG ; Xijing CHEN ; Yang DING ; Yuwen XU ; Xinglong CHANG ; Liang LI ; Qiu LIU ; Yumei CAO ; Yan ZHONG ; Xia SUN ; Qingming GUO ; Tuanjie WANG ; Zhenzhong WANG ; Ya LING ; Wei XIAO ; Zhangjian HUANG ; Yihua ZHANG
Acta Pharmaceutica Sinica B 2025;15(2):1070-1083
Ischemic stroke (IS) is a globally life-threatening disease. Presently, few therapeutic medicines are available for treating IS, and rt-PA is the only drug approved by the US Food and Drug Administration (FDA) in the US. In fact, many agents showing excellent neuroprotection but no blood flow-improving activity in animals have not achieved ideal clinical efficacy, while thrombolytic drugs only improving blood flow without neuroprotection have limited their wider application. To address these challenges and meet the huge unmet clinical need, we have designed and identified a novel compound AAPB with dual effects of neuroprotection and cerebral blood flow improvement. AAPB significantly reduced cerebral infarction and neural function deficit in tMCAO rats, pMCAO rats, and IS rhesus monkeys, as well as displayed exceptional safety profiles and excellent pharmacokinetic properties in rats and dogs. AAPB has now entered phase I of clinical trials fighting IS in China.
7.BRD4 regulates m6A of ESPL1 mRNA via interaction with ALKBH5 to modulate breast cancer progression.
Haisheng ZHANG ; Linlin LU ; Cheng YI ; Tao JIANG ; Yunqing LU ; Xianyuan YANG ; Ke ZHONG ; Jiawang ZHOU ; Jiexin LI ; Guoyou XIE ; Zhuojia CHEN ; Zongpei JIANG ; Gholamreza ASADIKARAM ; Yanxi PENG ; Dan ZHOU ; Hongsheng WANG
Acta Pharmaceutica Sinica B 2025;15(3):1552-1570
The interaction between m6A-methylated RNA and chromatin modification remains largely unknown. We found that targeted inhibition of bromodomain-containing protein 4 (BRD4) by siRNA or its inhibitor (JQ1) significantly decreases mRNA m6A levels and suppresses the malignancy of breast cancer (BC) cells via increased expression of demethylase AlkB homolog 5 (ALKBH5). Mechanistically, inhibition of BRD4 increases the mRNA stability of ALKBH5 via enhanced binding between its 3' untranslated regions (3'UTRs) with RNA-binding protein RALY. Further, BRD4 serves as a scaffold for ubiquitin enzymes tripartite motif containing-21 (TRIM21) and ALKBH5, resulting in the ubiquitination and degradation of ALKBH5 protein. JQ1-increased ALKBH5 then demethylates mRNA of extra spindle pole bodies like 1 (ESPL1) and reduces binding between ESPL1 mRNA and m6A reader insulin like growth factor 2 mRNA binding protein 3 (IGF2BP3), leading to decay of ESPL1 mRNA. Animal and clinical studies confirm a critical role of BRD4/ALKBH5/ESPL1 pathway in BC progression. Further, our study sheds light on the crosstalks between histone modification and RNA methylation.
8.First ATG101-recruiting small molecule degrader for selective CDK9 degradation via autophagy-lysosome pathway.
Ye ZHONG ; Jing XU ; Huiying CAO ; Jie GAO ; Shaoyue DING ; Zhaohui REN ; Huali YANG ; Yili SUN ; Maosheng CHENG ; Jia LI ; Yang LIU
Acta Pharmaceutica Sinica B 2025;15(5):2612-2624
Cyclin-dependent kinase 9 (CDK9) is a member of the transcription CDK subfamily and plays a role in transcriptional regulation. Selective CDK9 degraders possess potent clinical advantages over reversible CDK9 inhibitors. Herein, we report the first ATG101-recruiting selective CDK9 degrader, AZ-9, based on the hydrophobic tag kinesin degradation technology. AZ-9 showed significant degradation effects and selectivity toward other homologous cell cycle CDKs in vitro and in vivo, which could also affect downstream related phenotypes. Mechanism research revealed that AZ-9 recruits ATG101 to initiate the autophagy-lysosome pathway, and forms autophagosomes through the recruitment of LC3, which then fuses with lysosomes to degrade CDK9 and the partner protein Cyclin T1. These dates validated the existence of non-proteasomal degradation pathway of hydrophobic driven protein degradation strategy for the first time, which might provide research ideas for chemical induction intervention on other types of pathogenic proteins.
9.Erratum: Author correction to "SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade" Acta Pharm Sin B 9 (2019) 304-315.
Mingxia ZHAO ; Wenjie GUO ; Yuanyuan WU ; Chenxi YANG ; Liang ZHONG ; Guoliang DENG ; Yuyu ZHU ; Wen LIU ; Yanhong GU ; Yin LU ; Lingdong KONG ; Xiangbao MENG ; Qiang XU ; Yang SUN
Acta Pharmaceutica Sinica B 2025;15(5):2810-2812
[This corrects the article DOI: 10.1016/j.apsb.2018.08.009.].
10.Expert consensus on the diagnosis and treatment of cemental tear.
Ye LIANG ; Hongrui LIU ; Chengjia XIE ; Yang YU ; Jinlong SHAO ; Chunxu LV ; Wenyan KANG ; Fuhua YAN ; Yaping PAN ; Faming CHEN ; Yan XU ; Zuomin WANG ; Yao SUN ; Ang LI ; Lili CHEN ; Qingxian LUAN ; Chuanjiang ZHAO ; Zhengguo CAO ; Yi LIU ; Jiang SUN ; Zhongchen SONG ; Lei ZHAO ; Li LIN ; Peihui DING ; Weilian SUN ; Jun WANG ; Jiang LIN ; Guangxun ZHU ; Qi ZHANG ; Lijun LUO ; Jiayin DENG ; Yihuai PAN ; Jin ZHAO ; Aimei SONG ; Hongmei GUO ; Jin ZHANG ; Pingping CUI ; Song GE ; Rui ZHANG ; Xiuyun REN ; Shengbin HUANG ; Xi WEI ; Lihong QIU ; Jing DENG ; Keqing PAN ; Dandan MA ; Hongyu ZHAO ; Dong CHEN ; Liangjun ZHONG ; Gang DING ; Wu CHEN ; Quanchen XU ; Xiaoyu SUN ; Lingqian DU ; Ling LI ; Yijia WANG ; Xiaoyuan LI ; Qiang CHEN ; Hui WANG ; Zheng ZHANG ; Mengmeng LIU ; Chengfei ZHANG ; Xuedong ZHOU ; Shaohua GE
International Journal of Oral Science 2025;17(1):61-61
Cemental tear is a rare and indetectable condition unless obvious clinical signs present with the involvement of surrounding periodontal and periapical tissues. Due to its clinical manifestations similar to common dental issues, such as vertical root fracture, primary endodontic diseases, and periodontal diseases, as well as the low awareness of cemental tear for clinicians, misdiagnosis often occurs. The critical principle for cemental tear treatment is to remove torn fragments, and overlooking fragments leads to futile therapy, which could deteriorate the conditions of the affected teeth. Therefore, accurate diagnosis and subsequent appropriate interventions are vital for managing cemental tear. Novel diagnostic tools, including cone-beam computed tomography (CBCT), microscopes, and enamel matrix derivatives, have improved early detection and management, enhancing tooth retention. The implementation of standardized diagnostic criteria and treatment protocols, combined with improved clinical awareness among dental professionals, serves to mitigate risks of diagnostic errors and suboptimal therapeutic interventions. This expert consensus reviewed the epidemiology, pathogenesis, potential predisposing factors, clinical manifestations, diagnosis, differential diagnosis, treatment, and prognosis of cemental tear, aiming to provide a clinical guideline and facilitate clinicians to have a better understanding of cemental tear.
Humans
;
Dental Cementum/injuries*
;
Consensus
;
Diagnosis, Differential
;
Cone-Beam Computed Tomography
;
Tooth Fractures/therapy*

Result Analysis
Print
Save
E-mail