1.Optimization Strategy and Practice of Traditional Chinese Medicine Compound and Its Component Compatibility
Zhihao WANG ; Wenjing ZHOU ; Chenghao FEI ; Yunlu LIU ; Yijing ZHANG ; Yue ZHAO ; Lan WANG ; Liang FENG ; Zhiyong LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):299-310
Prescription optimization is a crucial aspect in the study of traditional Chinese medicine (TCM) compounds. In recent years, the introduction of mathematical methods, data mining techniques, and artificial neural networks has provided new tools for elucidating the compatibility rules of TCM compounds. The study of TCM compounds involves numerous variables, including the proportions of different herbs, the specific extraction parts of each ingredient, and the interactions among multiple components. These factors together create a complex nonlinear dose-effect relationship. In this context, it is essential to identify methods that suit the characteristics of TCM compounds and can leverage their advantages for effective application in new drug development. This paper provided a comprehensive review of the cutting-edge optimization experimental design methods applied in recent studies of TCM compound compatibilities. The key technical issues, such as the optimization of source material selection, dosage optimization of compatible herbs, and multi-objective optimization indicators, were discussed. Furthermore, the evaluation methods for component effects were summarized during the optimization process, so as to provide scientific and practical foundations for innovative research in TCM and the development of new drugs based on TCM compounds.
2.Reproductive toxicity of clothianidin on two generations of Wistar rats
Yinghua LIU ; Qinghua ZHOU ; Shufei LI ; Miao ZHAO ; Dianming ZHOU ; Zhiyong QIAN
Journal of Public Health and Preventive Medicine 2025;36(5):18-22
Objective To investigate the reproductive and developmental effects of Clothianidin in rats. Methods Clothianidin was administrated by diet to both parental and first filial (F 1) generations of rats at the dosages of 0, 30.51, 110.84 and 304.26 mg/(kg·d) in females, and 0, 26.45, 92.69 and 279.42 mg/(kg·d) in males. Clothianidin was administered through diet to male and female rats for 8 weeks before mating. Clothianidin was administered to female rats in the parental and F1 generations during mating, gestation and lactation periods. During the test, toxicity performance was observed, reproduction index was calculated, and pathological examination was carried out. Results The body weights of rats in the parent and F1 generations in the high-dose group were lower than those in the control group during pre-mating exposure and at various time points during pregnancy and lactation (P<0.05). The pregnancy rates of parental and F1 generations in the high-dose group were lower than those of the control group (48.57% vs 71.43%, 45.71% vs 80.00%, P<0. 05). Sperm concentration and sperm motility of the parental generation were lower than those of the control group [(42.55±12.87) vs (53.84±7.65) ×106/ml, (58.94±10.59) vs (65.59±6.03), (P<0.05)]. Sperm concentration and sperm motility of the F1 generation were lower than those of the control group [(41.64±12.42) vs (53.09±9.48), (55.13±9.19) vs (64.53±6.31), (P<0.05). Conclusion Exposure to clothianidin has reproductive toxicity to Wistar rats, and the no-observed adverse effect level (NOAEL) in the two-generation reproductive toxicity test is 92.69 mg/kg·BW for males and 110.84 mg/kg·BW for females in Wistar rats.
3.Pathophysiological characteristics of mice with diabetes combined with SARS-CoV-2 spike protein infection
Xiaoyue SU ; Jingxuan LI ; Ying LIN ; Yongxiang ZHANG ; Zhiyong XIAO ; Wenxia ZHOU
Chinese Journal of Pharmacology and Toxicology 2024;38(6):410-419
OBJECTIVE To establish a mouse model of diabetes mellitus(DM)combined with severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)infection to investigate the important pathophysiological changes in the development of DM combined with SARS-CoV-2 infection.METHODS Wild-type(WT)mice and transgenic mice expressing the human angiotensin-converting enzyme 2 receptor driven by the cytokeratin-18 gene promoter(K18-hACE2)were randomly divided into the control group,DM group,SARS-CoV-2 spike protein(S)infection group and DM combined with S protein infection group,with 10 to 12 mice in each group.All the mice were induced by 10 weeks of high-fat diet combined with 40 mg·kg-1 streptozotocin(STZ)for 3 days by ip,except those in the control group or S protein infection group.The control group was given the same volume of 0.1 mol·L-1 sodium citrate buffer.Mice in the S protein infection group and DM+S protein infection group were additionally given 50 μL mixture of 15 μg SARS-CoV-2 spike protein and 1 g·L-1 polyinosinic-polycytidylic acid(poly[I:C])via intranasal drops,while the control group was given an equal volume of sterile water.The glucose tolerance level and pancreatic islet β cell function of mice were evaluated via oral glucose tolerance test at the 6th week of high-fat feeding and 1 week after the administration of STZ by ip.From the 6th week of high-fat feeding to 2 weeks after the administration of STZ,the random blood glucose and fasting blood glucose of mice were measured by a blood glucose meter.Blood samples were taken from subman-dibular veins of 3 mice in each group at 24,48 and 120 h after S protein infection,and lung tissues were taken after euthanization.The pathological changes of lungs of DM mice before and after S protein infection were observed by HE staining.Except for the DM group,blood samples were collected before S protein infection and at 6,24,48,72 and 120 h after infection.The levels of plasma interleukin 1β(IL-1β),IL-2,IL-6,IL-10,IL-17,interferon gamma-induced protein 10(IP-10),interferon γ(IFN-γ),tumor necrosis factor α(TNF-α),monocyte chemotactic protein-1(MCP-1)and granulocyte-colony stimulating factor(G-CSF)were detected by Luminex.The plasma levels of heparan sulfate(HS)were measured by enzyme-linked immunosorbent assay.The levels of cytokines and HS were correlated with the degree of pathological damage by Spearman correlation analysis.RESULTS STZ and high-fat diet could induce DM-like expression in mice,and the random blood glucose(P<0.01)and fasting blood glucose(P<0.05)after 1 week in the hACE2-DM group were significantly higher than in the WT-DM group,and the degree of islet function damage in hACE2-DM mice was significantly higher than that of WT-DM mice(P<0.05).Compared with the DM group,the DM+S group showed more severe pulmonary pathological changes after S protein infection,accompanied by a large number of inflammatory infiltrations and thickening of lung interstitial.Compared with the control group,the levels of pro-inflammatory cytokines G-CSF,IL-6 and IP-10 in the plasma of the WT-S group were significantly increased at 6 h after S pro-tein infection(P<0.01),and those of pro-inflammatory cytokine IL-17 and anti-inflammatory cytokine IL-10 were significantly increased at 24 h after S protein infection(P<0.05).Compared with the control group,the plasma levels of pro-inflammatory cytokines IL-1β,IL-6,TNF-α,MCP-1,G-CSF and IP-10 in the hACE2-S group were significantly increased at 6 h after S protein infection(P<0.05,P<0.01).IL-17 was significantly increased at 24 h and 6 h after S protein infection in the WT-DM+S group and hACE2-DM+S group,respectively(P<0.01,P<0.05).In the hACE2-DM+S group,IFN-γ and IL-1β were signifi-cantly increased in delay to 48 h(P<0.05,P<0.01),and MCP-1 was significantly increased in delay to 72h(P<0.05).Compared with the control group,the level of HS in the plasma of the WT-S group increased significantly(P<0.05,P<0.01)at 6 h and 24 h after S protein infection,but began to decrease at 48 h.At the same time,compared with the WT-S group,the HS level in the WT-DM+S group was slightly increased at 6 h after infection and decreased at 24 h.Compared with the control group,the HS level in the hACE2-S group was significantly increased at 24 h(P<0.01),as was the case with the WT-S group 24 h,48 h and 120 h after S protein infection.At 6 h,24 h and 48 h after S protein infection,the plasma HS level of the hACE2-DM+S group was significantly increased(P<0.01,P<0.05),and the duration of the increase was longer than in the hACE2-S group.Moreover,the levels of IL-1β,IL-10,MCP-1,IP-10,G-CSF and HS in plasma were positively correlated with the degree of lung dam-age in the DM+S group.CONCLUSION In this study,the mouse model of diabetes combined with SARS-CoV-2 spike protein infection has mimicked part of the pathophysiological features of clinical patients,mainly manifested as blunted immune response and elevated HS levels with longer duration to infection alone.IL-1β,IL-10,MCP-1,IP-10,G-CSF and HS may keep track of the course of disease in patients with diabetes combined with SARS-CoV-2 infection.
4.Research progress in roles of macrophage-capping protein in tumor invasion and metastasis
Xia CUI ; Zhiyong XIAO ; Feng LIU ; Wenxia ZHOU
Chinese Journal of Pharmacology and Toxicology 2024;38(7):542-549
Macrophage-capping protein(CapG)is a member of the gelsolin superfamily.It is a universal multifunctional actin binding protein in the body and highly expressed in breast cancer,bladder cancer,prostate cancer and other types of cancer,which can promote the metastasis and invasion of cancer cells.This article reviews the structure,function,related signal pathways and roles of CapG in tumor invasiveness.
5.Effects of SR9009 and LXH0225,REV-ERB agonists,on mood disor-ders and cognitive impairment in over-training mice
Qi DENG ; Xinhua HE ; Zhiyong XIAO ; Wenxia ZHOU
Chinese Journal of Pharmacology and Toxicology 2024;38(11):816-825
OBJECTIVE To study the effects of SR9009 and LXH0225,nuclear receptor subfamily 1 group D member(REV-ERB)agonists,on mood disorders and cognitive impairment in over-training mice.METHODS Male C57BL/6J mice were randomly divided into the normal control,over-training model,model+fluoxetine(15 mg?kg-1),model+SR9009(100 mg?kg-1)and model+LXH0225(50 mg?kg-1)groups.Mice in the normal control group were ip given15%cremophor without extra stress while those in other groups were ip given 15%cremophor or different drugs respectively 30 min before daily forced swimming stress.When stressed,mice were forced to swim in 19-21℃water for 20 min per day for 18 d.After that,locomotor activity was assessed.Rotarod test and weight-loaded swimming test were performed to measure physical strength,while open field test and stair-climbing test were performed to measure anxiety-like behavior.Tail suspension test and forced swimming test were used to measure depression-like behavior while novel object recognition test and Y maze test were conducted to measure recogni-tion function.ELISA was used to measure serum corticosterone contents.RESULTS Compared with the normal control group,the locomotor activity of mice in the model group was significantly increased(P<0.01).There were anxiety-like behaviors with a significant increase in the number of times of stair-climb-ing and rearing(P<0.01).Depression-like behaviors were observed with a significant increase immobile time in forced swimming test(P<0.01).Cognitive impairment was manifested as decreased accuracy of Y-maze spontaneous alternation response(P<0.01).The corticosterone content was significantly elevated(P<0.01)in forced swimming mice.Compared with the model group,the accuracy of Y-maze spontaneous alternations was higher(P<0.01)and the content of serum corticosterone was lower(P<0.01)in the model+fluoxetine group.The immobile time was shorter(P<0.01),the spontaneous alternation response of Y maze was was less accurate(P<0.05)and serum corticosterone content was lower(P<0.01)in the model+SR9009 group than in the model group.The latency to fall off the rotarod was longer(P<0.05),the immobile time was shorter(P<0.01)and the content of serum corticosterone was lower(P<0.01)in the model+LXH0225 group compared with the model group.CONCLUSION The REV-ERBs agonists SR9009 and LXH0225 may protect against forced swimming over-training induced mood disorders and cognitive impairment.
6.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
7.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
8.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
9.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.
10.Changing distribution and resistance profiles of Klebsiella strains in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Chuyue ZHUO ; Yingyi GUO ; Chao ZHUO ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Wenhui HUANG ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(4):418-426
Objective To understand the changing distribution and antimicrobial resistance profiles of Klebsiella strains in 52 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Methods Antimicrobial susceptibility testing was carried out according to the unified CHINET protocol.The susceptibility results were interpreted according to the breakpoints in the Clinical & Laboratory Standards Institute(CLSI)M100 document.Results A total of 241,549 nonduplicate Klebsiella strains were isolated from 2015 to 2021,including Klebsiella pneumoniae(88.0%),Klebsiella aerogenes(5.8%),Klebsiella oxytoca(5.7%),and other Klebsiella species(0.6%).Klebsiella strains were mainly isolated from respiratory tract(48.49±5.32)%.Internal medicine(22.79±3.28)%,surgery(17.98±3.10)%,and ICU(14.03±1.39)%were the top 3 departments where Klebsiella strains were most frequently isolated.K.pneumoniae isolates showed higher resistance rate to most antimicrobial agents compared to other Klebsiella species.Klebsiella isolates maintained low resistance rates to tigecycline and polymyxin B.ESBLs-producing K.pneumoniae and K.oxytoca strains showed higher resistance rates to all the antimicrobial agents tested compared to the corresponding ESBLs-nonproducing strains.The K.pneumoniae and carbapenem-resistant K.pneumoniae(CRKP)strains isolated from ICU patients demonstrated higher resistance rates to majority of the antimicrobial agents tested than the strains isolated from non-ICU patients.The CRKP strains isolated from adult patients had higher resistance rates to most of the antimicrobial agents tested than the corresponding CRKP strains isolated from paediatric patients.Conclusions The prevalence of carbapenem-resistant strains in Klebsiella isolates increased greatly from 2015 to 2021.However,the Klebsiella isolates remained highly susceptible to tigecycline and polymyxin B.Antimicrobial resistance surveillance should still be strengthened for Klebsiella strains.


Result Analysis
Print
Save
E-mail