1.Ilizarov bone transport combined with antibiotic bone cement promotes junction healing of large tibial bone defect
Zhibo ZHANG ; Zhaolin WANG ; Zhigang WANG ; Peng LI ; Jianhao JIANG ; Kai ZHANG ; Shuye YANG ; Gangqiang DU
Chinese Journal of Tissue Engineering Research 2025;29(10):2038-2043
BACKGROUND:Ilizarov bone transport is very effective in the treatment of open large tibial bone defects,but there are still complications,among which the difficulty of junction healing is one of the difficult points in treatment. OBJECTIVE:To investigate the effect of Ilizarov bone transport combined with antibiotic bone cement on junction healing after operation of open large tibial bone defect. METHODS:Totally 51 patients with open large tibial bone defect(bone defect>4 cm)admitted to Binzhou Medical University Hospital from August 2010 to January 2022 were selected,of which 28 received Ilizarov bone transport alone(control group)and 23 received Ilizarov bone transport combined with antibiotic bone cement treatment(trial group).External fixation time,bone healing time,bone healing index,visual analog scale score during bone removal,bone defect limb function,junction healing and complications at the final follow-up were statistically compared between the two groups. RESULTS AND CONCLUSION:(1)All the 51 patients were followed up for a mean of(22.53±5.77)months.External fixation time,bone healing time,bone healing index,postoperative infection rate,and non-healing rate of junction were less in the trial group than those in the control group(P<0.05).There was no significant difference between the two groups in visual analog scale scores at 6 months after the second surgery and in the functional excellence and good rate of limb with bone defect at the final follow-up(P>0.05).(2)These findings indicate that compared with the Ilizarov bone transport alone,Ilizarov bone transport combined with antibiotic bone cement treatment can promote the healing of open tibial fracture junction and increase the rate of bone healing.
2.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
3.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
4.USP29 alleviates the progression of MASLD by stabilizing ACSL5 through K48 deubiquitination
Sha HU ; Zhouxiang WANG ; Kun ZHU ; Hongjie SHI ; Fang QIN ; Tuo ZHANG ; Song TIAN ; Yanxiao JI ; Jianqing ZHANG ; Juanjuan QIN ; Zhigang SHE ; Xiaojing ZHANG ; Peng ZHANG ; Hongliang LI
Clinical and Molecular Hepatology 2025;31(1):147-165
Background/Aims:
Metabolic dysfunction–associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic steatosis. Ubiquitin-specific protease 29 (USP29) plays pivotal roles in hepatic ischemiareperfusion injury and hepatocellular carcinoma, but its role in MASLD remains unexplored. Therefore, the aim of this study was to reveal the effects and underlying mechanisms of USP29 in MASLD progression.
Methods:
USP29 expression was assessed in liver samples from MASLD patients and mice. The role and molecular mechanism of USP29 in MASLD were assessed in high-fat diet-fed and high-fat/high-cholesterol diet-fed mice and palmitic acid and oleic acid treated hepatocytes.
Results:
USP29 protein levels were significantly reduced in mice and humans with MASLD. Hepatic steatosis, inflammation and fibrosis were significantly exacerbated by USP29 deletion and relieved by USP29 overexpression. Mechanistically, USP29 significantly activated the expression of genes related to fatty acid β-oxidation (FAO) under metabolic stimulation, directly interacted with long-chain acyl-CoA synthase 5 (ACSL5) and repressed ACSL5 degradation by increasing ACSL5 K48-linked deubiquitination. Moreover, the effect of USP29 on hepatocyte lipid accumulation and MASLD was dependent on ACSL5.
Conclusions
USP29 functions as a novel negative regulator of MASLD by stabilizing ACSL5 to promote FAO. The activation of the USP29-ACSL5 axis may represent a potential therapeutic strategy for MASLD.
5.Boron neutron capture therapy: A new era in radiotherapy.
Ling ZHOU ; Meng PENG ; Yuming CHEN ; Huanqing LIANG ; Xiumao YIN ; Jieming MO ; Xiaotao HUANG ; Zhigang LIU
Chinese Medical Journal 2025;138(19):2517-2519
6.Graph Neural Networks and Multimodal DTI Features for Schizophrenia Classification: Insights from Brain Network Analysis and Gene Expression.
Jingjing GAO ; Heping TANG ; Zhengning WANG ; Yanling LI ; Na LUO ; Ming SONG ; Sangma XIE ; Weiyang SHI ; Hao YAN ; Lin LU ; Jun YAN ; Peng LI ; Yuqing SONG ; Jun CHEN ; Yunchun CHEN ; Huaning WANG ; Wenming LIU ; Zhigang LI ; Hua GUO ; Ping WAN ; Luxian LV ; Yongfeng YANG ; Huiling WANG ; Hongxing ZHANG ; Huawang WU ; Yuping NING ; Dai ZHANG ; Tianzi JIANG
Neuroscience Bulletin 2025;41(6):933-950
Schizophrenia (SZ) stands as a severe psychiatric disorder. This study applied diffusion tensor imaging (DTI) data in conjunction with graph neural networks to distinguish SZ patients from normal controls (NCs) and showcases the superior performance of a graph neural network integrating combined fractional anisotropy and fiber number brain network features, achieving an accuracy of 73.79% in distinguishing SZ patients from NCs. Beyond mere discrimination, our study delved deeper into the advantages of utilizing white matter brain network features for identifying SZ patients through interpretable model analysis and gene expression analysis. These analyses uncovered intricate interrelationships between brain imaging markers and genetic biomarkers, providing novel insights into the neuropathological basis of SZ. In summary, our findings underscore the potential of graph neural networks applied to multimodal DTI data for enhancing SZ detection through an integrated analysis of neuroimaging and genetic features.
Humans
;
Schizophrenia/pathology*
;
Diffusion Tensor Imaging/methods*
;
Male
;
Female
;
Adult
;
Brain/metabolism*
;
Young Adult
;
Middle Aged
;
White Matter/pathology*
;
Gene Expression
;
Nerve Net/diagnostic imaging*
;
Graph Neural Networks
7.Role and mechanism of macrophage-mediated osteoimmune in osteonecrosis of the femoral head.
Yushun WANG ; Jianrui ZHENG ; Yuhong LUO ; Lei CHEN ; Zhigang PENG ; Gensen YE ; Deli WANG ; Zhen TAN
Chinese Journal of Reparative and Reconstructive Surgery 2024;38(1):119-124
OBJECTIVE:
To summarize the research progress on the role of macrophage-mediated osteoimmune in osteonecrosis of the femoral head (ONFH) and its mechanisms.
METHODS:
Recent studies on the role and mechanism of macrophage-mediated osteoimmune in ONFH at home and abroad were extensively reviewed. The classification and function of macrophages were summarized, the osteoimmune regulation of macrophages on chronic inflammation in ONFH was summarized, and the pathophysiological mechanism of osteonecrosis was expounded from the perspective of osteoimmune, which provided new ideas for the treatment of ONFH.
RESULTS:
Macrophages are important immune cells involved in inflammatory response, which can differentiate into classically activated type (M1) and alternatively activated type (M2), and play specific functions to participate in and regulate the physiological and pathological processes of the body. Studies have shown that bone immune imbalance mediated by macrophages can cause local chronic inflammation and lead to the occurrence and development of ONFH. Therefore, regulating macrophage polarization is a potential ONFH treatment strategy. In chronic inflammatory microenvironment, inhibiting macrophage polarization to M1 can promote local inflammatory dissipation and effectively delay the progression of ONFH; regulating macrophage polarization to M2 can build a local osteoimmune microenvironment conducive to bone repair, which is helpful to necrotic tissue regeneration and repair to a certain extent.
CONCLUSION
At present, it has been confirmed that macrophage-mediated chronic inflammatory immune microenvironment is an important mechanism for the occurrence and development of ONFH. It is necessary to study the subtypes of immune cells in ONFH, the interaction between immune cells and macrophages, and the interaction between various immune cells and macrophages, which is beneficial to the development of potential therapeutic methods for ONFH.
Humans
;
Femur Head/pathology*
;
Osteonecrosis/therapy*
;
Macrophages/pathology*
;
Inflammation
;
Femur Head Necrosis/pathology*
8.Effect of LncRNA SNHG1 on homocysteine-induced podocytespyrophosis
Zhenghao ZHANG ; Fang MA ; Qing ZHANG ; Tongtong XIA ; Honglin LIU ; Zhigang BAI ; Guanjun LU ; Jingwen ZHANG ; Hongjian PENG ; Yideng JIANG ; Shengchao MA
The Journal of Practical Medicine 2024;40(4):476-482
Objective To investigate the role of lncRNA SNHG1 in homocysteine-induced pyroptosis of podocyte.Methods Cbs+/-mice were randomly divided into two groups:a normal diet group(ND)and a high me-thionine diet group(HMD).Western blotting was used to detect the protein expression levels of Caspase-1,Cleaved Caspase-1,and NLRP3.Mouse renal glomerular podocytes were cultured in vitro,and then assigned into a control group(Control,0 μmol/L Hcy)and a homocysteine intervention group(Hcy,80 μmol/L Hcy).Western blotting was used to detect the protein expression levels of Caspase-1,Cleaved Caspase-1,and NLRP3.Mouse renal glomerular podocyion group(OE-NC + Hcy)and the lncSNHG1 overexpression + homocysteine intervention group(OE-SNHG1 + Hcy)were also established.After 48 hours of intervention,Real-time fluorescence quantita-tive PCR was used to detect the expression of lncSNHG1 in podocytes after Hcy intervention.Western blot was used to detect the expressions of Caspase-1,Cleaved Caspase-3 and NLRP3.Immunofluorescence was used to de-tect the expression levels of GSDMD and GSDMD-N.ELISA was used to detect the contents of IL-1β and IL-18.Results(1)In the animal experiments,the expression levels of pyroptosis-related proteins Caspase-1,Cleaved Caspase-1,NLRP3,GSDMD,and GSDMD-N were all increased in the HMD group compared with the ND group.(2)In the cellular experiments,the expression levels of Caspase-1,Cleaved Caspase-1,NLRP3,GSDMD,and GSDMD-N were all increased in the Hcy group compared with the Control group,and the contents of pyroptosis-mediated inflammatory factors IL-1β and IL-18 were increased as well.(3)In the cellular experiments,the expres-sion of lncSNHG1 was increased in the Hcy group compared with the control group.After transduction with lnc-SNHG1 lentivirus,the expression of lncSNHG1 was increased in the OE-SNHG1 group,compared with the control group and the OE-NC group.(4)In the cellular experiments,the expressions of pyroptosis-related proteins Cas-pase-1,Cleaved Caspase-1,NLRP3,GSDMD,and GSDMD-N were increased compared with the OE-NC+Hcy group,and the contents of pyroptosis-mediated inflammatory factors IL-1β and IL-18 were increased in the OE-SNHG1+Hcy group.Conclusion These results indicate that lncSNHG1 may play a role in promoting Hcy induced podocytepyroptosis.
9.MicroRNA-451 from Human Umbilical Cord-Derived Mesenchymal Stem Cell Exosomes Inhibits Alveolar Macrophage Autophagy via Tuberous Sclerosis Complex 1/Mammalian Target of Rapamycin Pathway to Attenuate Burn-Induced Acute Lung Injury in Rats
Jia ZHIGANG ; Li LIN ; Zhao PENG ; Fei GUO ; Li SHUANGRU ; Song QINQIN ; Liu GUANGPENG ; Liu JISONG
Biomedical and Environmental Sciences 2024;37(9):1030-1043
Objective Our previous studies established that microRNA (miR)-451 from human umbilical cord mesenchymal stem cell-derived exosomes (hUC-MSC-Exos) alleviates acute lung injury (ALI). This study aims to elucidate the mechanisms by which miR-451 in hUC-MSC-Exos reduces ALI by modulating macrophage autophagy. Methods Exosomes were isolated from hUC-MSCs. Severe burn-induced ALI rat models were treated with hUC-MSC-Exos carrying the miR-451 inhibitor. Hematoxylin-eosin staining evaluated inflammatory injury. Enzyme-linked immunosorbnent assay measured lipopolysaccharide (LPS),tumor necrosis factor-α,and interleukin-1β levels. qRT-PCR detected miR-451 and tuberous sclerosis complex 1 (TSC1) expressions. The regulatory role of miR-451 on TSC1 was determined using a dual-luciferase reporter system. Western blotting determined TSC1 and proteins related to the mammalian target of rapamycin (mTOR) pathway and autophagy. Immunofluorescence analysis was conducted to examine exosomes phagocytosis in alveolar macrophages and autophagy level. Results hUC-MSC-Exos with miR-451 inhibitor reduced burn-induced ALI and promoted macrophage autophagy. MiR-451 could be transferred from hUC-MSCs to alveolar macrophages via exosomes and directly targeted TSC1. Inhibiting miR-451 in hUC-MSC-Exos elevated TSC1 expression and inactivated the mTOR pathway in alveolar macrophages. Silencing TSC1 activated mTOR signaling and inhibited autophagy,while TSC1 knockdown reversed the autophagy from the miR-451 inhibitor-induced. Conclusion miR-451 from hUC-MSC exosomes improves ALI by suppressing alveolar macrophage autophagy through modulation of the TSC1/mTOR pathway,providing a potential therapeutic strategy for ALI.
10.Assessment of high-resolution MR vessel wall imaging for plaques characteristics changes after lipid-lowering therapy in acute stroke patients
Yingshuai ZHANG ; Zhigang PENG ; Xinju GAO ; Hongran LIU ; Cuicui LIU ; Xiaona LI
Journal of Practical Radiology 2024;40(6):880-883,887
Objective To evaluate the effect of standardized lipid-lowering therapy in acute stroke patients via high-resolution magnetic resonance vessel wall imaging(HRMR-VWI)to follow-up the characteristics changes of intracranial atherosclerotic plaques.Methods Twenty-two acute stroke patients(65 plaques)were enrolled,and their clinical and imaging data were collected on admission and after standardized lipid-lowering therapy(355-370 days).Diffusion weighted imaging(DWI),three-dimensional time of flight magnetic resonance angiography(3D-TOF-MRA),and HRMR-VWI were performed in all patients.According to the changes in non-high density lipoprotein(non-HDL),all patients were divided into the effective lipid-lowering group and the ineffective lipid-lowering group.The demographic information,plaques characteristics and the effect of standardized lipid-lowering therapy of all patients were compared.Results One(2.33%)plaque in the effective group showed reverse remodeling and four(18.18%)new plaques in the anterior circulation in the ineffective group.Patients in the effective group were significantly better than those in the ineffective group in terms of plaque thickness,load,remodeling index(RI),and the rate of increase in plaque thickness,load,stenosis,and RI,with statistically significant difference(P<0.05).There was no statistical significance in the rate of stenosis between the two groups.Conclusion Standardized lipid-lowering therapy has differences in the prognosis of acute stroke patients,and HRMR-VWI may be conducive to individualized assessment of the lipid-lowering effect.

Result Analysis
Print
Save
E-mail