1.Severity Assessment Parameters and Diagnostic Technologies of Obstructive Sleep Apnea
Zhuo-Zhi FU ; Ya-Cen WU ; Mei-Xi LI ; Ping-Ping YIN ; Hai-Jun LIN ; Fu ZHANG ; Yu-Xiang YANG
Progress in Biochemistry and Biophysics 2025;52(1):147-161
Obstructive sleep apnea (OSA) is an increasingly widespread sleep-breathing disordered disease, and is an independent risk factor for many high-risk chronic diseases such as hypertension, coronary heart disease, stroke, arrhythmias and diabetes, which is potentially fatal. The key to the prevention and treatment of OSA is early diagnosis and treatment, so the assessment and diagnostic technologies of OSA have become a research hotspot. This paper reviews the research progresses of severity assessment parameters and diagnostic technologies of OSA, and discusses their future development trends. In terms of severity assessment parameters of OSA, apnea hypopnea index (AHI), as the gold standard, together with the percentage of duration of apnea hypopnea (AH%), lowest oxygen saturation (LSpO2), heart rate variability (HRV), oxygen desaturation index (ODI) and the emerging biomarkers, constitute a multi-dimensional evaluation system. Specifically, the AHI, which measures the frequency of sleep respiratory events per hour, does not fully reflect the patients’ overall sleep quality or the extent of their daytime functional impairments. To address this limitation, the AH%, which measures the proportion of the entire sleep cycle affected by apneas and hypopneas, deepens our understanding of the impact on sleep quality. The LSpO2 plays a critical role in highlighting the potential severe hypoxic episodes during sleep, while the HRV offers a different perspective by analyzing the fluctuations in heart rate thereby revealing the activity of the autonomic nervous system. The ODI provides a direct and objective measure of patients’ nocturnal oxygenation stability by calculating the number of desaturation events per hour, and the biomarkers offers novel insights into the diagnosis and management of OSA, and fosters the development of more precise and tailored OSA therapeutic strategies. In terms of diagnostic techniques of OSA, the standardized questionnaire and Epworth sleepiness scale (ESS) is a simple and effective method for preliminary screening of OSA, and the polysomnography (PSG) which is based on recording multiple physiological signals stands for gold standard, but it has limitations of complex operations, high costs and inconvenience. As a convenient alternative, the home sleep apnea testing (HSAT) allows patients to monitor their sleep with simplified equipment in the comfort of their own homes, and the cardiopulmonary coupling (CPC) offers a minimal version that simply analyzes the electrocardiogram (ECG) signals. As an emerging diagnostic technology of OSA, machine learning (ML) and artificial intelligence (AI) adeptly pinpoint respiratory incidents and expose delicate physiological changes, thus casting new light on the diagnostic approach to OSA. In addition, imaging examination utilizes detailed visual representations of the airway’s structure and assists in recognizing structural abnormalities that may result in obstructed airways, while sound monitoring technology records and analyzes snoring and breathing sounds to detect the condition subtly, and thus further expands our medical diagnostic toolkit. As for the future development directions, it can be predicted that interdisciplinary integrated researches, the construction of personalized diagnosis and treatment models, and the popularization of high-tech in clinical applications will become the development trends in the field of OSA evaluation and diagnosis.
2.Resveratrol activates extracellular-regulated protein kinase 5 signaling protein to promote proliferation of mouse MC3T3-E1 cells
Yongkang NIU ; Zhiwei FENG ; Yaobin WANG ; Zhongcheng LIU ; Dejian XIANG ; Xiaoyuan LIANG ; Zhi YI ; Hongwei ZHAN ; Bin GENG ; Yayi XIA
Chinese Journal of Tissue Engineering Research 2025;29(5):908-916
BACKGROUND:The extracellular-regulated protein kinase 5(ERK5)signaling protein is essential for the survival of organisms,and resveratrol can promote osteoblast proliferation through various pathways.However,whether resveratrol can regulate osteoblast function through the ERK5 signaling protein needs further verification. OBJECTIVE:To explore the regulatory effect of ERK5 on the proliferation of MC3T3-E1 cells and related secreted proteins,and to further verify whether resveratrol can complete the above process by activating ERK5. METHODS:Mouse MC3T3-E1 preosteoblasts were treated with complete culture medium,XMD8-92(an ERK5 inhibitor),epidermal growth factor(an ERK5 activator),resveratrol alone,XMD8-92+EGF,and resveratrol+XMD8-92,respectively.Western blot assay was used to detect the expression of ERK5 and p-ERK5 proteins,proliferation-related proteins Cyclin D1,CDK4 and PCNA,and osteoblast-secreted proteins osteoprotegerin and receptor activator of nuclear factor-κB ligand in MC3T3-E1 cells of each group.The fluorescence intensity of ERK5,osteoprotegerin and receptor activator of nuclear factor-κB ligand in each group was detected by cell immunofluorescence staining,and cell proliferation was detected by EdU staining,respectively.The appropriate concentration and time of resveratrol intervention in MC3T3-E1 cells were determined by cell morphology observation and cell counting kit-8 assay. RESULTS AND CONCLUSION:The activation of ERK5 signaling protein could effectively promote the proliferation of MC3T3-E1 cells,up-regulate the osteoprotegerin/receptor activator of nuclear factor-κB ligand ratio.The appropriate concentration and time for resveratrol intervention in MC3T3-E1 cells was 5 μmol/L and 24 hours,respectively.Resveratrol could activate ERK5 signaling protein,thereby promoting osteoblast proliferation and up-regulating the osteoprotegerin/RANKL ratio.All these results indicate that resveratrol can promote the proliferation of MC3T3-E1 cells and up-regulate the osteoprotegerin/RANKL ratio by activating the ERK5 signaling protein.
3.The Ferroptosis-inducing Compounds in Triple Negative Breast Cancer
Xin-Die WANG ; Da-Li FENG ; Xiang CUI ; Su ZHOU ; Peng-Fei ZHANG ; Zhi-Qiang GAO ; Li-Li ZOU ; Jun WANG
Progress in Biochemistry and Biophysics 2025;52(4):804-819
Ferroptosis, a programmed cell death modality discovered and defined in the last decade, is primarily induced by iron-dependent lipid peroxidation. At present, it has been found that ferroptosis is involved in various physiological functions such as immune regulation, growth and development, aging, and tumor suppression. Especially its role in tumor biology has attracted extensive attention and research. Breast cancer is one of the most common female tumors, characterized by high heterogeneity and complex genetic background. Triple negative breast cancer (TNBC) is a special type of breast cancer, which lacks conventional breast cancer treatment targets and is prone to drug resistance to existing chemotherapy drugs and has a low cure rate after progression and metastasis. There is an urgent need to find new targets or develop new drugs. With the increase of studies on promoting ferroptosis in breast cancer, it has gradually attracted attention as a treatment strategy for breast cancer. Some studies have found that certain compounds and natural products can act on TNBC, promote their ferroptosis, inhibit cancer cells proliferation, enhance sensitivity to radiotherapy, and improve resistance to chemotherapy drugs. To promote the study of ferroptosis in TNBC, this article summarized and reviewed the compounds and natural products that induce ferroptosis in TNBC and their mechanisms of action. We started with the exploration of the pathways of ferroptosis, with particular attention to the System Xc--cystine-GPX4 pathway and iron metabolism. Then, a series of compounds, including sulfasalazine (SAS), metformin, and statins, were described in terms of how they interact with cells to deplete glutathione (GSH), thereby inhibiting the activity of glutathione peroxidase 4 (GPX4) and preventing the production of lipid peroxidases. The disruption of the cellular defense against oxidative stress ultimately results in the death of TNBC cells. We have also our focus to the realm of natural products, exploring the therapeutic potential of traditional Chinese medicine extracts for TNBC. These herbal extracts exhibit multi-target effects and good safety, and have shown promising capabilities in inducing ferroptosis in TNBC cells. We believe that further exploration and characterization of these natural compounds could lead to the development of a new generation of cancer therapeutics. In addition to traditional chemotherapy, we discussed the role of drug delivery systems in enhancing the efficacy and reducing the toxicity of ferroptosis inducers. Nanoparticles such as exosomes and metal-organic frameworks (MOFs) can improve the solubility and bioavailability of these compounds, thereby expanding their therapeutic potential while minimizing systemic side effects. Although preclinical data on ferroptosis inducers are relatively robust, their translation into clinical practice remains in its early stages. We also emphasize the urgent need for more in-depth and comprehensive research to understand the complex mechanisms of ferroptosis in TNBC. This is crucial for the rational design and development of clinical trials, as well as for leveraging ferroptosis to improve patient outcomes. Hoping the above summarize and review could provide references for the research and development of lead compounds for the treatment for TNBC.
4.Research progress of traditional Chinese medicine regulating PI3K/Akt signaling pathway to promote chronic wound healing
Zhenhui ZHU ; Zhi LI ; Yu LENG ; Tao CAI ; Xuefa SHEN ; Xianxue XIANG ; Yongxin HUANG
China Pharmacy 2025;36(8):1019-1024
The pathogenesis of chronic wound healing is complex. It is often difficult to heal due to a long course of disease, difficulty in treatment, and it seriously affects the quality of life in patients. The active ingredients, couplet medicinals, and compound formulas of traditional Chinese medicine (TCM) possess unique advantages in the treatment of chronic wound healing. The phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway is extremely critical in the treatment of chronic wound healing by regulating a series of biological processes, including cell apoptosis, angiogenesis, and inflammatory responses. This article reviews the relevant research on the regulation of the PI3K/Akt signaling pathway by TCM to promote chronic wound healing. It has been found that the active ingredients of TCM (such as geniposide, astragaloside, and ginsenosides, etc.), and compound formulas (such as Chonghe ointment, Huanglian ointment, Shirun shaoshang ointment, etc.) mainly reduce inflammatory responses, promote angiogenesis, regulate cell autophagy, and accelerate wound healing by activating the PI3K/Akt signaling pathway; at the same time, there are also a few couplet medicinals( such as Huangqi-Honghua) and compound formulas (such as Xiangpi Shengji ointment) that exert anti-inflammatory effects by inhibiting this signaling pathway, to promote wound healing.
5.The Role of AMPK in Diabetic Cardiomyopathy and Related Intervention Strategies
Fang-Lian LIAO ; Xiao-Feng CHEN ; Han-Yi XIANG ; Zhi XIA ; Hua-Yu SHANG
Progress in Biochemistry and Biophysics 2025;52(10):2550-2567
Diabetic cardiomyopathy is a distinct form of cardiomyopathy that can lead to heart failure, arrhythmias, cardiogenic shock, and sudden death. It has become a major cause of mortality in diabetic patients. The pathogenesis of diabetic cardiomyopathy is complex, involving increased oxidative stress, activation of inflammatory responses, disturbances in glucose and lipid metabolism, accumulation of advanced glycation end products (AGEs), abnormal autophagy and apoptosis, insulin resistance, and impaired intracellular Ca2+ homeostasis. Recent studies have shown that adenosine monophosphate-activated protein kinase (AMPK) plays a crucial protective role by lowering blood glucose levels, promoting lipolysis, inhibiting lipid synthesis, and exerting antioxidant, anti-inflammatory, anti-apoptotic, and anti-ferroptotic effects. It also enhances autophagy, thereby alleviating myocardial injury under hyperglycemic conditions. Consequently, AMPK is considered a key protective factor in diabetic cardiomyopathy. As part of diabetes prevention and treatment strategies, both pharmacological and exercise interventions have been shown to mitigate diabetic cardiomyopathy by modulating the AMPK signaling pathway. However, the precise regulatory mechanisms, optimal intervention strategies, and clinical translation require further investigation. This review summarizes the role of AMPK in the prevention and treatment of diabetic cardiomyopathy through drug and/or exercise interventions, aiming to provide a reference for the development and application of AMPK-targeted therapies. First, several classical AMPK activators (e.g., AICAR, A-769662, O-304, and metformin) have been shown to enhance autophagy and glucose uptake while inhibiting oxidative stress and inflammatory responses by increasing the phosphorylation of AMPK and its downstream target, mammalian target of rapamycin (mTOR), and/or by upregulating the gene expression of glucose transporters GLUT1 and GLUT4. Second, many antidiabetic agents (e.g., teneligliptin, liraglutide, exenatide, semaglutide, canagliflozin, dapagliflozin, and empagliflozin) can promote autophagy, reverse excessive apoptosis and autophagy, and alleviate oxidative stress and inflammation by enhancing AMPK phosphorylation and its downstream targets, such as mTOR, or by increasing the expression of silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor‑α (PPAR‑α). Third, certain anti-anginal (e.g., trimetazidine, nicorandil), anti-asthmatic (e.g., farrerol), antibacterial (e.g., sodium houttuyfonate), and antibiotic (e.g., minocycline) agents have been shown to promote autophagy/mitophagy, mitochondrial biogenesis, and inhibit oxidative stress and lipid accumulation via AMPK phosphorylation and its downstream targets such as protein kinase B (PKB/AKT) and/or PPAR‑α. Fourth, natural compounds (e.g., dihydromyricetin, quercetin, resveratrol, berberine, platycodin D, asiaticoside, cinnamaldehyde, and icariin) can upregulate AMPK phosphorylation and downstream targets such as AKT, mTOR, and/or the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), thereby exerting anti-inflammatory, anti-apoptotic, anti-pyroptotic, antioxidant, and pro-autophagic effects. Fifth, moderate exercise (e.g., continuous or intermittent aerobic exercise, aerobic combined with resistance training, or high-intensity interval training) can activate AMPK and its downstream targets (e.g., acetyl-CoA carboxylase (ACC), GLUT4, PPARγ coactivator-1α (PGC-1α), PPAR-α, and forkhead box protein O3 (FOXO3)) to promote fatty acid oxidation and glucose uptake, and to inhibit oxidative stress and excessive mitochondrial fission. Finally, the combination of liraglutide and aerobic interval training has been shown to activate the AMPK/FOXO1 pathway, thereby reducing excessive myocardial fatty acid uptake and oxidation. This combination therapy offers superior improvement in cardiac dysfunction, myocardial hypertrophy, and fibrosis in diabetic conditions compared to liraglutide or exercise alone.
6.Chemical Constituents, Pharmacological Effect, and Product Development of Eucommia ulmoides with Both Medicinal and Edible Values: A Review
Zhi XIANG ; Huanjie LI ; Xinyang SHEN ; Haokai LIN ; Caiyun PENG ; Wei WANG ; Huanghe YU
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(2):190-202
Eucommia ulmoides, a plant belonging to Eucommiaceae, has a history of medical use for over two thousand years in China. The dried bark and leaves of this plant are usually used as medicinal materials. Due to the high safety in clinical application, E. ulmoides leaves were officially recognized for both medicinal and edible use by the food safety evaluation in 2019, providing a valuable resource for the development of food and health products. According to the traditional Chinese medicine theory, E. ulmoides has the effects of nourishing the liver and kidneys, strengthening sinews and bones, and calming fetus. Modern research has shown that different parts such as the bark, leaves, flowers, and seeds of E. ulmoides contain similar chemical components, including phenylpropanoids, terpenoids, flavonoids, phenolic acids, steroids, and polysaccharides. E. ulmoides exhibits diverse pharmacological activities such as lowering blood pressure and blood lipid and glucose levels, preventing osteoporosis and possesses anti-tumor, anti-bacterial, antiviral, anti-inflammatory, antioxidant, and hepatoprotective effects. Therefore, it holds great potential for the development of products with both medicinal and edible values. This review systematically summarizes the chemical constituents, pharmacological activities, and representative medicinal and edible products of different parts of E. ulmoides. It is expected to provide theoretical references for the clinical application of E. ulmoides and its active components and the development and utilization of the products with both medicinal and edible values. This review contributes to a deeper understanding of the medicinal properties of E. ulmoides and provides guidance for further exploration of its applications in the healthcare field. As a plant with both medicinal and edible values, E. ulmoides is expected to attract more attention in future research and contribute to human health.
7.Effects of scutellarin on endometrial carcinoma Ishikawa cells based on PI3K/Akt signaling pathway
Li-Li DAI ; Jing WANG ; Xu-Rui WEI ; Qing-Ya MA ; Na WANG ; Zhi-Xiang DU
The Chinese Journal of Clinical Pharmacology 2024;40(1):27-31
Objective To study the effects of scutellarin on endometrial carcinoma Ishikawa cells,and analyze the correlation between the effects and phosphatidyl inositol 3 kinase(PI3 K)/protein kinase B(Akt)signaling pathway.Methods Ishikawa cells were divided into blank group and experimental-L,-M,-H groups,each group was treated with complete medium containing 0,5,10 and 20 μmol·L-1 scutellarin,respectively.Cell viability,clonal formation ability,metastatic ability,invasion,apoptosis and protein expression were detected by cell counting kit-8(CCK-8),plate cloning,scratch,Transwell,flow cytometry and Western blot assay,respectively.Results The cell viability of blank group and experimental-L,-M,-H groups at 48 h were(100.00±0.00)%,(78.51±7.54)%,(52.93±4.91)%and(41.62±5.33)%;the clone formation rate were(100.00±0.00)%,(56.59±6.34)%,(35.23±4.62)%and(10.66±1.91)%;the scratch healing rate were(53.70±6.19)%,(40.59±4.75)%,(34.25±4.40)%and(15.78±2.14)%;the number of invasive cells were 189.70±14.06,106.82±12.67,84.37±8.13 and 53.74±6.78;the relative expression levels of matrixmetallo proteinase-2 were 0.96±0.10,0.73±0.06,0.68±0.08 and 0.42±0.05;tissue inhibitor of MMP-1(TIMP-1)were 0.35±0.04,0.51±0.05,0.74±0.08 and 1.20±0.14;the apoptosis rates were(4.21±0.53)%,(15.83±2.42)%,(22.72±3.85)%and(34.41±4.67)%;the relative expression levels of B cell lymphoma-2(Bcl-2)were 1.38±0.15,0.90±0.10,0.56±0.06 and 0.24±0.03;Bcl-2 associated X protein(Bax)were 0.31±0.02,0.44±0.04,0.93±0.11 and 1.26±0.14;the relative expression levels of PI3Kp85 were 0.67±0.05,0.42±0.04,0.36±0.02 and 0.28±0.03;phosphorylated Akt(p-Akt)were 0.78±0.06,0.53±0.04,0.46±0.05 and 0.42±0.03.Compared with the blank group,the above indexes in the experimental-L,-M,-H groups were statistically significant(P<0.05 or P<0.01).Conclusion Scutellarin can inhibit the proliferation,metastatic ability and invasion of endometrial carcinoma Ishikawa cells and promote apoptosis by regulating PI3K/Akt signaling pathway.
8.Progress of bevacizumab intraperitoneal instillation in the treatment of ovarian cancer
Zhi-Qi ZHANG ; Zhuo ZHANG ; Qian-Xin LIU ; Qian XIANG ; Yi-Min CUI
The Chinese Journal of Clinical Pharmacology 2024;40(5):759-762
The expression of vascular endothelial growth factor(VEGF)in ovarian cancer tissues is closely related to the degree of malignancy of ovarian cancer,and can be an effective target for ovarian cancer treatment.Bevacizumab,as a monoclonal antibody targeting VEGF,can inhibit tumor neovascularization and tumor growth,and is used for the treatment of ovarian cancer,cervical cancer,metastatic colorectal cancer and other malignant tumors.Bevacizumab administered by intraperitoneal perfusion has good efficacy for malignant ascites in tumor patients,and can alleviate patients'clinical symptoms.In recent years,more studies have explored the clinical application method,therapeutic efficacy and related adverse effects of bevacizumab intraperitoneal instillation in the treatment of ovarian cancer,and this article is a review in this field,aiming to provide reference for the clinical treatment of ovarian cancer.
9.Effects of Hedysarum polybotrys polysacchcaide on NF-κB/IKKβ signaling pathway in db/db mice with diabetic cardiomyopathy
Hua-Zhi ZHANG ; Zhi-Sheng JIN ; Jin-Ning SUN ; Jing SHAO ; Xiang-Xia LUO
The Chinese Journal of Clinical Pharmacology 2024;40(6):849-853
Objective To investigate the effect of hedysarum polysacchcaide(HPS)on nuclear transcription factor-κB(NF-κB)/IκB kinase β(IKKβ)signaling pathway in cardiac tissue of db/db mice with diabetic cardiomyopathy(DCM).Methods Altogether 60 7-week-old male db/db mice were randomly divided into model group,control group and experimental-H,-M,-L groups,with 12 mice in each group.In addition,12 db/m mice of the same week age were selected as the normal group.Normal group and model group were given 0.9%NaCl by intragastric administration.Experimental-L,-M,-H groups were given 50,100 and 200 mg·kg-1 HPS suspension by intragastriction,respectively.Control group was given 4 mg·kg-1 rosiglitazone suspension by intragastric administration.Six groups of rats were given the drug once a day for 8 weeks.The contents of tumor necrosis factor-α(TNF-α)and interleukin-6(IL-6)in myocardial tissue were detected by enzyme-linked immunosorbent assay.The mRNA expression levels of NF-κB and IKKβ in myocardial tissue were detected by real-time fluorescence quantitative polymerase chain reaction.The correlation between the expression of NF-κB protein and the content of TNF-α and IL-6 was analyzed.Results The contents of IL-6 in myocardial tissue of normal,model,control and experimental-H groups were(1.24±0.54),(7.72±0.24),(2.90±0.50)and(2.78±0.56)ng·L-1;the contents of TNF-α were(1.96±0.52),(5.25±0.72),(2.84±0.86)and(2.82±0.58)ng·L-1;the mRNA expression levels of NF-κB were I.00±0.00,3.35±0.81,2.05±0.44 and 1.67±0.22;the mRNA expression levels of IKKβ were 1.00±0.00,2.92±0.07,1.51±0.07 and 1.41±0.08,respectively.Compared with the model group,the above indexes of the control and experimental-H groups were statistically significant(P<0.01,P<0.05).The expression of NF-κB protein was positively correlated with the content of IL-6 and TNF-α,and the correlation coefficients were 0.866 and 0.740(all P<0.01).Conclusion HPS can alleviate the damage of myocardial pathology in mice,reduce myocardial collagen deposition and fibrosis,its mechanism may be through regulating the expression of NF-κB/IKKβ signaling pathway to play a role in inhibiting the inflammatory reaction.
10.Network pharmacology and molecular docking to explore the mechanism of antiplatelet drugs in the treatment of acute lung injury
Jing NIU ; Qian XIANG ; Zhi-Yan LIU ; Zhe WANG ; Lin-Yu CAO
The Chinese Journal of Clinical Pharmacology 2024;40(6):914-917
Objective To explore the mechanism of antiplatelet drugs in the treatment of acute lung injury based on the strategy of network pharmacology.Methods The targets of antiplatelet drugs were predicted by SwissTargetPrediction platform,and the related targets of acute lung injury were obtained by GeneCards and OMIM databases.The protein interaction network was constructed through the STRING platform.The CytoHubba and MCODE plug-ins in Cytoscape software were used to screen out the core targets and highly connected target clusters for the treatment of acute lung injury.The DAVID database was used to analyze the gene ontology(GO)bioprocess and Kyoto encyclopedia of genes and genomes(KEGG)signaling pathway enrichment of the core targets.Finally,AutoDockTools software was used for molecular docking verification.Results A total of 20 core targets for antiplatelet drugs in the treatment of acute lung injury were screened,among which the top three core targets were proto-oncogene tyrosine-protein kinase(SRC),phosphoinositide-3-kinase regulatory subunit 1(PIK3R1)and signal transducer and activator of transcription 3(STAT3).Antiplatelet drugs may play a role in the treatment of acute lung injury by regulating epidermal growth factor receptor(ErbB)signaling pathway,positive programmed death receptor-1(PD-1)/programmed death receptor ligand-1(PD-L1)signaling pathway and Janus activated kinase/signal transducer and activator of transcription(JAK-STAT)signaling pathway.Molecular docking results further showed that antiplatelet drugs could bind well to core targets.Conclusion This study elucidated the possible mechanism of antiplatelet drugs in the treatment of acute lung injury from a systematic and holistic perspective,and provided new ideas for further study of the pharmacological mechanism of antiplatelet drugs in the treatment of acute lung injury.

Result Analysis
Print
Save
E-mail