1.Synergistic Effect and Mechanism of FUT8 Inhibitor 2FF With DOX for Cancer Treatment
Zhi-Dong XIE ; Xiao-Lian ZHANG
Progress in Biochemistry and Biophysics 2025;52(2):478-486
ObjectiveChemotherapy is one of the important therapeutic approaches for cancer treatment. However, the emergence of multidrug resistance and side effects significantly limit its application. To address these challenges, chemotherapy is often combined with other drugs or therapies. Among the 13 human fucosyltransferases (FUTs) identified, FUT8 (alpha-(1,6)-fucosyltransferase) is the only enzyme responsible for core fucosylation. Core fucosylation plays an important role in cancer occurrence, metastasis and chemotherapy resistance, making the suppression of FUT8 a potential strategy for reversing multidrug resistance. This study aims to evaluate the feasibility of combining the small molecule FUT8 inhibitor 2FF (2-deoxy-2-fluoro-L-fucose) with the clinical chemotherapeutic drug doxorubicin (DOX) for treating malignant tumors. MethodsThe human hepatocellular carcinoma cell line HepG2 and mouse colon cancer cell line CT26 cells were treated with 2FF, DOX or their combination and core fucosylation levels were assessed using Lectin blot. HepG2 and CT26 cells were exposed to 50 μmol/L 2FF for 72 h, followed by treatment with a gradient concentration of DOX for 24 h. Cell viability and IC50 values were determined via the CCK-8 assay. Transwell invasion assays were conducted to evaluate the combined effect of 2FF and DOX on the invasion ability of HepG2 cells. Flow cytometry was performed to analyze the impact of 2FF, DOX and their combination on membrane PD-L1 expression of HepG2 cells. To assess the in vivo effect, 6- to 8-week-old female BALB/c mice (20-25 g), were subcutaneously injected with 1×106 CT26 cells into the right axilla (four groups, six mice in each group). After the average tumor volume reached 100 mm3, mice were treated with DOX, 2FF, their combination, or saline (mock group) every other day. DOX was administrated intraperitoneally (2 mg/kg), 2FF intravenously (5 mg/kg), and the combination group, received the both treatment. Tumor size was measured every other day using a vernier caliper. ResultsThis study demonstrated that DOX upregulates the core fucosylation levels in HepG2 and CT26 cells,while 2FF effectively inhibits this DOX-induced effect. Furthermone, 2FF enhanced the sensitivity of HepG2 and CT26 cells to DOX. The combination of 2FF and DOX synergistically inhibited the invasion ability of HepG2 cells, and enhanced the anti-tumor efficacy of CT26 subcutaneous tumor model in BALB/c mice. However the combination treatment led to weight loss in mice. In addition, DOX increased the cell surface PD-L1 expression in HepG2 cells, which was effectively suppressed by 2FF. ConclusionThe FUT8 inhibitor 2FF effectively suppresses DOX-induced upregulation of core fucosylation and PD-L1 levels in tumor cells, and 2FF synergistically enhances the anticancer efficacy of DOX.
2.Cross lag analysis of cumulative ecological risk and future orientation with health risk behaviors among higher vocational college students
ZENG Zhi, FU Gang, LI Ke, WANG Meifeng, WU Lian, ZHANG Tiancheng, ZHANG Fulan
Chinese Journal of School Health 2025;46(3):348-352
Objective:
To explore the causal link of cumulative ecological risk and future orientation with health risk behaviors among higher vocational college students, so as to provide reference for reducing and preventing health risk behaviors among higher vocational college students.
Methods:
A longitudinal follow up study was conducted on 612 students using convenience sampling from 2 vocational colleges in Hunan Province. The Cumulative Ecological Risk Scale, Future Orientation Scale, and Health Risk Behavior Scale were used during three follow up visits (T1: September 2022, T2: June 2023, T3: March 2024), and a cross lagged panel model was constructed to examine the longitudinal causal relationship of cumulative ecological risk, future orientation and health risk behaviors. Analysis of longitudinal intermediary effect between variables by Bootstrap.
Results:
The cumulative ecological risk scores of T1, T2 and T3 among higher vocational college students were (2.94±1.44,2.99±1.63,3.02±1.54), future orientation scores (40.49±4.71,41.51±5.72,41.06±4.35) and health risk behavior scores (3.73±2.01,3.49±2.00,3.23±2.00). The results of repeated measures ANOVA showed that the future orientation score of T2 was higher than that of T1, and the main effect of measurement time was statistically significant ( F=5.09,P<0.01,η 2=0.02). The health risk behavior score of T1 was higher than that of T2, and the health risk behavior score of T2 was higher than that of T3, and the main effect of measurement time was statistically significant ( F=10.12,P<0.01,η 2=0.03).The cross lagged model showed good adaptability, with χ 2/df =7.20 ( P <0.01), relative fitting indicators GFI=0.98, CFI=0.99, TLI=0.96, IFI=0.99, NFI =0.99, and absolute fitting indicator RMSEA =0.06. Among them, the T1, T2 cumulative ecological risk showed negatively predictive effects on T2, T3 future orientation ( β =-0.24, -0.47 ), and T1, T2 cumulative ecological risk positively predicted T2, T3 health risk behavior ( β =0.20, 0.24), while T1, T2 future orientation negatively predicted T2, T3 health risk behavior ( β =-0.25, -0.18) ( P <0.01). Bootstrap test analysis found that T2 future orientation had a longitudinal mediating effect ( β=0.04, P <0.01) on the T1 cumulative ecological risk and T3 health risk behavior.
Conclusions
The accumulation of ecological risk among higher vocational college students can positively predict health risk behaviors, while future orientation can negatively predict healthrisk behaviors. Moreover, future orientation plays a longitudinal mediating role between accumulated ecological risks and health risk behaviors.
3.The Role of AMPK in Diabetic Cardiomyopathy and Related Intervention Strategies
Fang-Lian LIAO ; Xiao-Feng CHEN ; Han-Yi XIANG ; Zhi XIA ; Hua-Yu SHANG
Progress in Biochemistry and Biophysics 2025;52(10):2550-2567
Diabetic cardiomyopathy is a distinct form of cardiomyopathy that can lead to heart failure, arrhythmias, cardiogenic shock, and sudden death. It has become a major cause of mortality in diabetic patients. The pathogenesis of diabetic cardiomyopathy is complex, involving increased oxidative stress, activation of inflammatory responses, disturbances in glucose and lipid metabolism, accumulation of advanced glycation end products (AGEs), abnormal autophagy and apoptosis, insulin resistance, and impaired intracellular Ca2+ homeostasis. Recent studies have shown that adenosine monophosphate-activated protein kinase (AMPK) plays a crucial protective role by lowering blood glucose levels, promoting lipolysis, inhibiting lipid synthesis, and exerting antioxidant, anti-inflammatory, anti-apoptotic, and anti-ferroptotic effects. It also enhances autophagy, thereby alleviating myocardial injury under hyperglycemic conditions. Consequently, AMPK is considered a key protective factor in diabetic cardiomyopathy. As part of diabetes prevention and treatment strategies, both pharmacological and exercise interventions have been shown to mitigate diabetic cardiomyopathy by modulating the AMPK signaling pathway. However, the precise regulatory mechanisms, optimal intervention strategies, and clinical translation require further investigation. This review summarizes the role of AMPK in the prevention and treatment of diabetic cardiomyopathy through drug and/or exercise interventions, aiming to provide a reference for the development and application of AMPK-targeted therapies. First, several classical AMPK activators (e.g., AICAR, A-769662, O-304, and metformin) have been shown to enhance autophagy and glucose uptake while inhibiting oxidative stress and inflammatory responses by increasing the phosphorylation of AMPK and its downstream target, mammalian target of rapamycin (mTOR), and/or by upregulating the gene expression of glucose transporters GLUT1 and GLUT4. Second, many antidiabetic agents (e.g., teneligliptin, liraglutide, exenatide, semaglutide, canagliflozin, dapagliflozin, and empagliflozin) can promote autophagy, reverse excessive apoptosis and autophagy, and alleviate oxidative stress and inflammation by enhancing AMPK phosphorylation and its downstream targets, such as mTOR, or by increasing the expression of silent information regulator 1 (SIRT1) and peroxisome proliferator-activated receptor‑α (PPAR‑α). Third, certain anti-anginal (e.g., trimetazidine, nicorandil), anti-asthmatic (e.g., farrerol), antibacterial (e.g., sodium houttuyfonate), and antibiotic (e.g., minocycline) agents have been shown to promote autophagy/mitophagy, mitochondrial biogenesis, and inhibit oxidative stress and lipid accumulation via AMPK phosphorylation and its downstream targets such as protein kinase B (PKB/AKT) and/or PPAR‑α. Fourth, natural compounds (e.g., dihydromyricetin, quercetin, resveratrol, berberine, platycodin D, asiaticoside, cinnamaldehyde, and icariin) can upregulate AMPK phosphorylation and downstream targets such as AKT, mTOR, and/or the expression of nuclear factor erythroid 2-related factor 2 (Nrf2), thereby exerting anti-inflammatory, anti-apoptotic, anti-pyroptotic, antioxidant, and pro-autophagic effects. Fifth, moderate exercise (e.g., continuous or intermittent aerobic exercise, aerobic combined with resistance training, or high-intensity interval training) can activate AMPK and its downstream targets (e.g., acetyl-CoA carboxylase (ACC), GLUT4, PPARγ coactivator-1α (PGC-1α), PPAR-α, and forkhead box protein O3 (FOXO3)) to promote fatty acid oxidation and glucose uptake, and to inhibit oxidative stress and excessive mitochondrial fission. Finally, the combination of liraglutide and aerobic interval training has been shown to activate the AMPK/FOXO1 pathway, thereby reducing excessive myocardial fatty acid uptake and oxidation. This combination therapy offers superior improvement in cardiac dysfunction, myocardial hypertrophy, and fibrosis in diabetic conditions compared to liraglutide or exercise alone.
5.Zedoarondiol Inhibits Neovascularization in Atherosclerotic Plaques of ApoE-/- Mice by Reducing Platelet Exosomes-Derived MiR-let-7a.
Bei-Li XIE ; Bo-Ce SONG ; Ming-Wang LIU ; Wei WEN ; Yu-Xin YAN ; Meng-Jie GAO ; Lu-Lian JIANG ; Zhi-Die JIN ; Lin YANG ; Jian-Gang LIU ; Da-Zhuo SHI ; Fu-Hai ZHAO
Chinese journal of integrative medicine 2025;31(3):228-239
OBJECTIVE:
To investigate the effect of zedoarondiol on neovascularization of atherosclerotic (AS) plaque by exosomes experiment.
METHODS:
ApoE-/- mice were fed with high-fat diet to establish AS model and treated with high- and low-dose (10, 5 mg/kg daily) of zedoarondiol, respectively. After 14 weeks, the expressions of anti-angiogenic protein thrombospondin 1 (THBS-1) and its receptor CD36 in plaques, as well as platelet activation rate and exosome-derived miR-let-7a were detected. Then, zedoarondiol was used to intervene in platelets in vitro, and miR-let-7a was detected in platelet-derived exosomes (Pexo). Finally, human umbilical vein endothelial cells (HUVECs) were transfected with miR-let-7a mimics and treated with Pexo to observe the effect of miR-let-7a in Pexo on tube formation.
RESULTS:
Animal experiments showed that after treating with zedoarondiol, the neovascularization density in plaques of AS mice was significantly reduced, THBS-1 and CD36 increased, the platelet activation rate was markedly reduced, and the miR-let-7a level in Pexo was reduced (P<0.01). In vitro experiments, the platelet activation rate and miR-let-7a levels in Pexo were significantly reduced after zedoarondiol's intervention. Cell experiments showed that after Pexo's intervention, the tube length increased, and the transfection of miR-let-7a minics further increased the tube length of cells, while reducing the expressions of THBS-1 and CD36.
CONCLUSION
Zedoarondiol has the effect of inhibiting neovascularization within plaque in AS mice, and its mechanism may be potentially related to inhibiting platelet activation and reducing the Pexo-derived miRNA-let-7a level.
Animals
;
MicroRNAs/genetics*
;
Exosomes/drug effects*
;
Plaque, Atherosclerotic/genetics*
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Humans
;
Blood Platelets/drug effects*
;
Apolipoproteins E/deficiency*
;
Thrombospondin 1/metabolism*
;
CD36 Antigens/metabolism*
;
Platelet Activation/drug effects*
;
Male
;
Mice
;
Mice, Inbred C57BL
6.Vascular Protection of Neferine on Attenuating Angiotensin II-Induced Blood Pressure Elevation by Integrated Network Pharmacology Analysis and RNA-Sequencing Approach.
A-Ling SHEN ; Xiu-Li ZHANG ; Zhi GUO ; Mei-Zhu WU ; Ying CHENG ; Da-Wei LIAN ; Chang-Geng FU ; Jun PENG ; Min YU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(8):694-706
OBJECTIVE:
To explore the functional roles and underlying mechanisms of neferine in the context of angiotensin II (Ang II)-induced hypertension and vascular dysfunction.
METHODS:
Male mice were infused with Ang II to induce hypertension and randomly divided into treatment groups receiving neferine or a control vehicle based on baseline blood pressure using a random number table method. The hypertensive mouse model was constructed by infusing Ang II via a micro-osmotic pump (500 ng/kg per minute), and neferine (0.1, 1, or 10 mg/kg), valsartan (10 mg/kg), or double distilled water was administered intragastrically once daily for 6 weeks. A non-invasive blood pressure system, ultrasound, and hematoxylin and eosin staining were performed to assess blood pressure and vascular changes. RNA sequencing and network pharmacology were employed to identify differentially expressed transcripts (DETs) and pathways. Vascular ring tension assay was used to test vascular function. A7R5 cells were incubated with neferine for 24 h and then treated with Ang II to record the real-time Ca2+ concentration by confocal microscope. Immunohistochemistry (IHC) and Western blot were used to evaluate vasorelaxation, calcium, and the extracellular signal-regulated kinase (ERK)1/2 pathway.
RESULTS:
Neferine treatment effectively mitigated the elevation in blood pressure, pulse wave velocity, aortic thickening in the abdominal aorta of Ang II-infused mice (P<0.05). RNA sequencing and network pharmacology analysis identified 355 DETs that were significantly reversed by neferine treatment, along with 25 potential target genes, which were further enriched in multiple pathways and biological processes, such as ERK1 and ERK2 cascade regulation, calcium pathway, and vascular smooth muscle contraction. Further investigation revealed that neferine treatment enhanced vasorelaxation and reduced Ca2+-dependent contraction of abdominal aortic rings, independent of endothelium function (P<0.05). The underlying mechanisms were mediated, at least in part, via suppression of receptor-operated channels, store-operated channels, or voltage-operated calcium channels. Neferine pre-treatment demonstrated a reduction in intracellular Ca2+ release in Ang II stimulated A7R5 cells. IHC staining and Western blot confirmed that neferine treatment effectively attenuated the upregulation of p-ERK1/2 both in vivo and in vitro, which was similar with treatment of ERK1/2 inhibitor PD98059 (P<0.05).
CONCLUSIONS
Neferine remarkably alleviates Ang II-induced elevation of blood pressure, vascular dysfunction, and pathological changes in the abdominal aorta. This beneficial effect is mediated by the modulation of multiple pathways, including calcium and ERK1/2 pathways.
Animals
;
Angiotensin II
;
Male
;
Benzylisoquinolines/therapeutic use*
;
Network Pharmacology
;
Blood Pressure/drug effects*
;
Sequence Analysis, RNA
;
Mice
;
Hypertension/chemically induced*
;
Mice, Inbred C57BL
;
Calcium/metabolism*
8.Effects of Laparoscopic Sleeve Gastrectomy on Cardiac Structure and Function in Obese Patients With Heart Failure.
Xiao-Yan JIA ; Rui-Jia LIAN ; Bao-Dong MA ; Yang-Xi HU ; Qin-Jun CHU ; Hai-Yun JING ; Zhi-Qiang KANG ; Jian-Ping YE ; Xi-Wen MA
Acta Academiae Medicinae Sinicae 2025;47(2):226-236
Objective To investigate the effects of laparoscopic sleeve gastrectomy(LSG)on the cardiac structure and function in obese patients with heart failure(HF)and compare the efficacy of LSG across obese patients with different HF types.Methods This study included 33 obese patients with HF who underwent LSG.The clinical indicators were compared between before operation and 12 months after operation.Repeated measures analysis of variance was employed to evaluate the changes in echocardiographic parameters before operation and 3,6,and 12 months after operation.Patients were allocated into a HF with preserved ejection fraction group(n=17),a HF with mildly reduced ejection fraction group(n=5)and a HF with reduced ejection fraction(HFrEF)group(n=11)based on left ventricular ejection fraction(LVEF)before operation for subgroup analyses of the effects of LSG on the cardiac structure and function of obese patients with HF.The paired samples t-test was conducted to assess the degree of cardiac structural and functional alterations after LSG.Results The 33 patients included 69.7% males,with an average age of(35.3±9.9)years,and a body mass index(BMI)of(51.2±9.8)kg/m2.The median follow-up was 9.0(5.0,13.3)months.Compared with the preoperative values,the postoperative BMI(P=0.002),body surface area(BSA)(P=0.009),waist circumference(P=0.010),hip circumference(P=0.031),body fat content(P=0.007),and percentage of patients with cardiac function grades Ⅲ-IV(P<0.001)decreased.At the 12-month follow-up left atrial diameter(P=0.006),right atrial long-axis inner diameter(RAD1)(P<0.001),right atrial short-axis inner diameter(RAD2)(P<0.001),right ventricular inner diameter(P=0.002),interventricular septal thickness at end-diastolic(P=0.002),and left ventricular end-diastolic volumes(P=0.004)and left ventricular end-systolic volumes(P=0.003) all significantly reduced compared with preoperative values.Additionally,left ventricular fractional shortening and LVEF improved(both P<0.001).Subgroup analyses revealed that cardiac structural parameters significantly decreased in the HF with preserved ejection fraction,HF with mildly reduced ejection fraction,and HFrEF subgroups compared with preoperative values.Notably,the HFrEF group demonstrated the best performance in terms of left atrial diameter(P=0.003),left ventricular inner diameter at end-diastole(P=0.008),RAD1(P<0.001),RAD2(P=0.004),right ventricular inner diameter(P=0.019),left ventricular end-diastolic volume(P=0.004)and left ventricular end-systolic volume(P=0.001),cardiac output(P=0.006),tricuspid regurgitation velocity(P=0.002),and pulmonary artery systolic pressure(P=0.001) compared to preoperatively.Postoperative left ventricular fractional shortening(P<0.001,P=0.003,P<0.001)and LVEF(P<0.001,P=0.011,P=0.001)became higher in all the three subgroups than the preoperative values.Conclusions LSG decreased the body weight,BMI,and BSA,improved the cardiac function grade,reversed the enlargement of the left atrium and left ventricle,reduced the right atrium and right ventricle,and enhanced the left ventricular systolic function.It was effective across obese patients with different HF types.Particularly,LSG demonstrates the best performance in improving the structures of both atria and ventricles in obese patients with HFrEF.
Humans
;
Male
;
Female
;
Gastrectomy/methods*
;
Heart Failure/complications*
;
Adult
;
Obesity/physiopathology*
;
Laparoscopy
;
Middle Aged
;
Heart/physiopathology*
;
Stroke Volume
9.Intramedullary nailing for irreducible spiral subtrochanteric fractures: A comparison of cerclage and non-cerclage wiring
Yan-Hui GUO ; Zhan-Lin SONG ; Hua-Yong ZHENG ; Jie GAO ; Yi-Yun LIN ; Zhi LIU ; Lian-Hua LI
Chinese Journal of Traumatology 2024;27(5):305-310
Purpose::Intramedullary nailing is the preferred internal fixation technique for the treatment of subtrochanteric fractures because of its biomechanical advantages. However, no definitive conclusion has been reached regarding whether combined cable cerclage is required during intramedullary nailing treatment. This study is performed to compare the clinical effects of intramedullary nailing with cerclage and non-cerclage wiring in the treatment of irreducible spiral subtrochanteric fractures.Methods::Patients with subtrochanteric fractures admitted to our center from January 2013 to December 2021 were retrospectively analyzed. The patients were enrolled in the case-control study according to the inclusion and exclusion criteria and divided into the non-cerclage group and the cerclage group. The patients' clinical data, including the operative time, intraoperative blood loss, hospital stay, reoperation rate, fracture union time, and Harris hip score, were compared between these 2 groups. Categorical variables were compared using Chi-square or Fisher's exact test. Continuous variables with normal distribution were presented as mean ± standard deviation and analyzed with Student's t-test. Nonnormally distributed variables were expressed as median (Q 1, Q 3) and assessed using the Mann-Whitney test. A p < 0.05 was considered significant. Results::In total, 69 patients were included in the study (35 patients in the non-cerclage group and 34 patients in the cerclage group). The baseline data of the 2 groups were comparable. There were no significant difference in the length of hospital stay (z = -0.391, p = 0.696), operative time (z = -1.289, p = 0.197), or intraoperative blood loss (z = -1.321, p = 0.186). However, compared with non-cerclage group, the fracture union time was shorter (z = -5.587, p < 0.001), the rate of nonunion was lower (χ 2= 6.030, p = 0.03), the anatomical reduction rate was higher (χ 2= 5.449, p = 0.03), and the Harris hip score was higher (z =-2.99, p = 0.003) in the cerclage group, all with statistically significant differences. Conclusions::Intramedullary nailing combined with cable cerclage wiring is a safe and reliable technique for the treatment of irreducible subtrochanteric fractures. This technique can improve the reduction effect, increase the stability of fracture fixation, shorten the fracture union time, reduce the occurrence of nonunion, and contribute to the recovery of hip joint function.
10.Effect of lncRNA MIR17HG on the malignant biological behavior of liver cancer cells by regulating the miR-214-3p/RNF38 signaling axis
Wei-Tao SUN ; Yan-Ke SHI ; Jun-Lian FENG ; Zhi-Fei CHEN ; Cun-Ling ZHANG
Modern Interventional Diagnosis and Treatment in Gastroenterology 2024;29(5):565-571
Objective To explore the effect of long non-coding RNA(lncRNA)microRNA 17-92 cluster host gene(MIR17HG)regulating microRNA(miR)-214-3p/ring finger protein 38(RNF38)signal axis on the malignant biological behavior of liver cancer cells.Methods The cancer tissues and adjacent tissues of 46 patients with liver cancer who underwent surgical resection in our hospital from May 2022 to October 2023 were collected to detect the expression of lncRNA MIR17HG,miR-214-3p and RNF38.HepG2,Bel-7402,SMMC-7721 and HL-7702 cells were cultured in vitro,and the expression of lncRNA MIR17HG,miR-214-3p and RNF38 was compared,Bel-7402 cells were selected for further study,and randomly divided into sh-NC group,sh-MIR17HG group,anti-NC group,anti-miR-214-3p group and Bel-7402 group.The proliferation,apoptosis,invasion and migration of Bel-7402 cells in each group were investigated,the expression of RNF38,caspase-3(caspase-3),B cell lymphoma-2(Bcl-2),matrix metalloproteinase-2(MMP2)and matrix metalloproteinase-9(MMP9)protein was analyzed by western blotting,the relationship between lncRNA MIR17HG and miR-214-3p and the relationship between miR-214-3p and RNF38 were verified by double luciferase.Results The mRNA expression of lncRNA MIR17HG and RNF38 in liver cancer tissues was higher,the mRNA expression of miR-214-3p was lower,and the positive expression rate of RNF38 protein was higher(P<0.05).The expression of lncRNA MIR17HG mRNA,RNF38 mRNA and RNF38 protein in SMMC-7721,HepG2 and Bel-7402 cells was higher than that in HL-7702 cells,and the expression of miR-214-3p mRNA was lower than that in HL-7702 cells(P<0.05).Compared with Bel-7402 group and sh-NC group,the OD450nm value,the number of cloned cells,the number of invasive cells,the number of migrated cells and the expression of RNF38,MMP2,Bcl-2 and MMP9 in sh-MIR17HG group decreased,while the apoptosis rate and the expression of caspase-3 increased(P<0.05).Compared with sh-MIR17HG group and anti-NC group,the OD450nm value,the number of cloned cells,the number of invasive cells,the number of migrated cells and the expression of RNF38,MMP2,Bcl-2 and MMP9 in anti-miR-214-3p group increased,while the apoptosis rate and the expression of caspase-3 decreased(P<0.05).LncRNA MIR17HG and miR-214-3p,and miR-214-3p and RNF38 have targeted relationships respectively.The luciferase activity in miR-214-3p+WT-MIR17HG group was lower than that in miR-NC+WT-MIR17HG group(P<0.05),and the luciferase activity in miR-214-3p+WT-RNF38 group was lower than that in miR-NC+WT-RNF38 group(P<0.05).Conclusion LncRNA MIR17HG may promote the malignant biological behavior of liver cancer cells by regulating the miR-214-3p/RNF38 axis.


Result Analysis
Print
Save
E-mail