1.Effect of Serum Containing Zhenwutang on Apoptosis of Myocardial Mast Cells and Mitochondrial Autophagy
Wei TANG ; Meiqun ZHENG ; Xiaolin WANG ; Zhiyong CHEN ; Chi CHE ; Zongqiong LU ; Jiashuai GUO ; Xiaomei ZOU ; Lili XU ; Lin LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):11-21
ObjectiveTo explore the effect of serum containing Zhenwutang on myocardial mast cell apoptosis induced by angiotensin Ⅱ (AngⅡ) and the mechanism of the correlation between apoptosis and mitochondrial autophagy. MethodsIn this experiment, AngⅡ and serum containing Zhenwutang with different concentrations were used to interfere with H9C2 cardiomyocytes for 24 h, and the survival rate of H9C2 cardiomyocytes was detected by cell counting kit-8 (CCK-8) to screen the optimal concentration for the experiment. Enzyme-linked immunosorbent assay (ELISA) was used to detect the content of B-type natriuretic peptide (BNP) in cell culture supernatant, and immunofluorescence was used to detect the cell surface area to verify the construction of the myocardial mast cell model. Subsequently, the experiment was divided into a blank group (20% blank serum), a model group (20% blank serum + 5×10-5 mol·L-1 AngⅡ), low-, medium-, and high-dose (5%, 10% and 20%) serum containing Zhenwutang groups, an autophagy inhibitor group (1×10-4 mol·L-1 3-MA), and autophagy inducer group (1×10-7 mol·L-1 rapamycin). The apoptosis level of H9C2 cells and the changes of mitochondrial membrane potential were detected by flow cytometry. The lysosomal probe (Lyso Tracker) and mitochondrial probe (Mito Tracker) co-localization was employed to detect autophagy. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect Caspase-3, Caspase-9, B-cell lymphoma 2 (Bcl-2), Bcl-2-related X protein (Bax), and cytochrome C (Cyt C) in apoptosis-related pathways and the relative mRNA expression of ubiquitin ligase (Parkin), phosphatase and tensin homolog (PTEN)-induced kinase 1 (PINK1), and p62 protein in mitochondrial autophagy-related pathways. Western blot was used to detect cleaved Caspase-3, cleaved Caspase-9, Bax, Bcl-2, and Cyt C in apoptosis-related pathways, phosphorylated ubiquitin ligase (p-Parkin), phosphorylated PTEN-induced kinase 1 (p-PINK1), p62, and Bcl-2 homology domain protein Beclin1 in mitochondrial autophagy-related pathways, and the change of microtubule-associated protein 1 light chain 3 (LC3) Ⅱ/Ⅰ ratio. ResultsCCK-8 showed that when the concentration of AngⅡ was 5×10-5 mol·L-1, the cell activity was the lowest, and there was no cytotoxicity. At this concentration, the surface area of cardiomyocytes was significantly increased (P<0.01), and the content of BNP in the supernatant of culture medium was significantly increased (P<0.05). Therefore, AngⅡ with a concentration of 5×10-5 mol·L-1 was selected for the subsequent modeling of myocardial mast cells. Compared with the blank group, the model group and the autophagy inhibitor 3-MA group had a significantly increased apoptosis rate (P<0.01) and significantly decreased mitochondrial membrane potential (P<0.01). The results of immunofluorescence co-localization showed that compared with the blank group, the model group had a significantly decreased number of red and green fluorescence spots. The results of Real-time PCR showed that compared with that in the blank group, the relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 in the model group was significantly up-regulated (P<0.01), while the relative mRNA expression of Bcl-2, Parkin, and PINK1 was significantly down-regulated (P<0.01). In addition, the relative protein expression of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 was significantly up-regulated (P<0.01). The LC3Ⅱ/Ⅰ was significantly decreased, and the relative protein expression of Bcl-2, p-Parkin, p-PINK1, and Beclin1 was significantly down-regulated (P<0.01). Compared with the model group, the serum containing Zhenwutang groups and the autophagy inducer group had significantly decreased apoptosis rate (P<0.01), and the decrease ratio of mitochondrial membrane potential is significantly lowered (P<0.01) in a dose-dependent manner. Additionally, both red and green fluorescence spots became more in these groups. In the 3-MA group, the number of red and green fluorescence spots decreased significantly. The relative mRNA expression of Bax, Caspase-3, Caspase-9, Cyt C, and p62 was significantly down-regulated (P<0.05, P<0.01), while that of Bcl-2, Parkin, and PINK1 was significantly up-regulated (P<0.01). In the serum containing Zhenwutang groups, the relative protein expression levels of Bax, cleaved Caspase-3, cleaved Caspase-9, Cyt C, and p62 were significantly down-regulated (P<0.05,P<0.01). The LC3Ⅱ/Ⅰ was significantly increased, and the relative protein expression levels of Bcl-2, p-Parkin, p-PINK1, and Beclin1 were significantly up-regulated (P<0.01). ConclusionThe serum containing Zhenwutang can reduce the apoptosis of myocardial mast cells and increase mitochondrial autophagy. This is related to the inhibition of intracellular Bax/Bcl-2/Caspase-3 apoptosis pathway and regulation of Parkin/PINK1 mitochondrial autophagy pathway.
2.Role of Innate Trained Immunity in Diseases
Chuang CHENG ; Yue-Qing WANG ; Xiao-Qin MU ; Xi ZHENG ; Jing HE ; Jun WANG ; Chao TAN ; Xiao-Wen LIU ; Li-Li ZOU
Progress in Biochemistry and Biophysics 2025;52(1):119-132
The innate immune system can be boosted in response to subsequent triggers by pre-exposure to microbes or microbial products, known as “trained immunity”. Compared to classical immune memory, innate trained immunity has several different features. Firstly, the molecules involved in trained immunity differ from those involved in classical immune memory. Innate trained immunity mainly involves innate immune cells (e.g., myeloid immune cells, natural killer cells, innate lymphoid cells) and their effector molecules (e.g., pattern recognition receptor (PRR), various cytokines), as well as some kinds of non-immune cells (e.g., microglial cells). Secondly, the increased responsiveness to secondary stimuli during innate trained immunity is not specific to a particular pathogen, but influences epigenetic reprogramming in the cell through signaling pathways, leading to the sustained changes in genes transcriptional process, which ultimately affects cellular physiology without permanent genetic changes (e.g., mutations or recombination). Finally, innate trained immunity relies on an altered functional state of innate immune cells that could persist for weeks to months after initial stimulus removal. An appropriate inducer could induce trained immunity in innate lymphocytes, such as exogenous stimulants (including vaccines) and endogenous stimulants, which was firstly discovered in bone marrow derived immune cells. However, mature bone marrow derived immune cells are short-lived cells, that may not be able to transmit memory phenotypes to their offspring and provide long-term protection. Therefore, trained immunity is more likely to be relied on long-lived cells, such as epithelial stem cells, mesenchymal stromal cells and non-immune cells such as fibroblasts. Epigenetic reprogramming is one of the key molecular mechanisms that induces trained immunity, including DNA modifications, non-coding RNAs, histone modifications and chromatin remodeling. In addition to epigenetic reprogramming, different cellular metabolic pathways are involved in the regulation of innate trained immunity, including aerobic glycolysis, glutamine catabolism, cholesterol metabolism and fatty acid synthesis, through a series of intracellular cascade responses triggered by the recognition of PRR specific ligands. In the view of evolutionary, trained immunity is beneficial in enhancing protection against secondary infections with an induction in the evolutionary protective process against infections. Therefore, innate trained immunity plays an important role in therapy against diseases such as tumors and infections, which has signature therapeutic effects in these diseases. In organ transplantation, trained immunity has been associated with acute rejection, which prolongs the survival of allografts. However, trained immunity is not always protective but pathological in some cases, and dysregulated trained immunity contributes to the development of inflammatory and autoimmune diseases. Trained immunity provides a novel form of immune memory, but when inappropriately activated, may lead to an attack on tissues, causing autoinflammation. In autoimmune diseases such as rheumatoid arthritis and atherosclerosis, trained immunity may lead to enhance inflammation and tissue lesion in diseased regions. In Alzheimer’s disease and Parkinson’s disease, trained immunity may lead to over-activation of microglial cells, triggering neuroinflammation even nerve injury. This paper summarizes the basis and mechanisms of innate trained immunity, including the different cell types involved, the impacts on diseases and the effects as a therapeutic strategy to provide novel ideas for different diseases.
3.Human amniotic mesenchymal stem cells overexpressing neuregulin-1 promote skin wound healing in mice
Taotao HU ; Bing LIU ; Cheng CHEN ; Zongyin YIN ; Daohong KAN ; Jie NI ; Lingxiao YE ; Xiangbing ZHENG ; Min YAN ; Yong ZOU
Chinese Journal of Tissue Engineering Research 2025;29(7):1343-1349
BACKGROUND:Neuregulin 1 has been shown to be characterized in cell proliferation,differentiation,and vascular growth.Human amniotic mesenchymal stem cells are important seed cells in the field of tissue engineering,and have been shown to be involved in tissue repair and regeneration. OBJECTIVE:To construct human amniotic mesenchymal stem cells overexpressing neuregulin 1 and investigate their proliferation and migration abilities,as well as their effects on wound healing. METHODS:(1)Human amniotic mesenchymal stem cells were in vitro isolated and cultured and identified.(2)A lentivirus overexpressing neuregulin 1 was constructed.Human amniotic mesenchymal stem cells were divided into empty group,neuregulin 1 group,and control group,and transfected with empty lentivirus and lentivirus overexpressing neuregulin 1,or not transfected,respectively.(3)Edu assay was used to detect the proliferation ability of the cells of each group,and Transwell assay was used to detect the migration ability of the cells.(4)The C57 BL/6 mouse trauma models were constructed and randomly divided into control group,empty group,neuregulin 1 group,with 8 mice in each group.Human amniotic mesenchymal stem cells transfected with empty lentivirus or lentivirus overexpressing neuregulin-1 were uniformly injected with 1 mL at multiple local wound sites.The control group was injected with an equal amount of saline.(5)The healing of the trauma was observed at 1,7,and 14 days after model establishment.Histological changes of the healing of the trauma were observed by hematoxylin-eosin staining.The expression of CD31 on the trauma was observed by immunohistochemistry. RESULTS AND CONCLUSION:(1)Human amniotic mesenchymal stem cells overexpressing neuregulin-1 were successfully constructed.The mRNA and protein expression of intracellular neuregulin 1 was significantly up-regulated compared with the empty group(P<0.05).(2)The overexpression of neuregulin 1 promoted the migratory ability(P<0.01)and proliferative ability of human amniotic mesenchymal stem cells(P<0.05).(3)Human amniotic mesenchymal stem cells overexpressing neuregulin 1 promoted wound healing in mice(P<0.05)and wound angiogenesis(P<0.05).The results showed that overexpression of neuregulin 1 resulted in an increase in the proliferative and migratory capacities of human amniotic mesenchymal stem cells,significantly promoting wound healing and angiogenesis.
4.Stroke-p2pHD: Cross-modality generation model of cerebral infarction from CT to DWI images.
Qing WANG ; Xinyao ZHAO ; Xinyue LIU ; Zhimeng ZOU ; Haiwang NAN ; Qiang ZHENG
Journal of Biomedical Engineering 2025;42(2):255-262
Among numerous medical imaging modalities, diffusion weighted imaging (DWI) is extremely sensitive to acute ischemic stroke lesions, especially small infarcts. However, magnetic resonance imaging is time-consuming and expensive, and it is also prone to interference from metal implants. Therefore, the aim of this study is to design a medical image synthesis method based on generative adversarial network, Stroke-p2pHD, for synthesizing DWI images from computed tomography (CT). Stroke-p2pHD consisted of a generator that effectively fused local image features and global context information (Global_to_Local) and a multi-scale discriminator (M 2Dis). Specifically, in the Global_to_Local generator, a fully convolutional Transformer (FCT) and a local attention module (LAM) were integrated to achieve the synthesis of detailed information such as textures and lesions in DWI images. In the M 2Dis discriminator, a multi-scale convolutional network was adopted to perform the discrimination function of the input images. Meanwhile, an optimization balance with the Global_to_Local generator was ensured and the consistency of features in each layer of the M 2Dis discriminator was constrained. In this study, the public Acute Ischemic Stroke Dataset (AISD) and the acute cerebral infarction dataset from Yantaishan Hospital were used to verify the performance of the Stroke-p2pHD model in synthesizing DWI based on CT. Compared with other methods, the Stroke-p2pHD model showed excellent quantitative results (mean-square error = 0.008, peak signal-to-noise ratio = 23.766, structural similarity = 0.743). At the same time, relevant experimental analyses such as computational efficiency verify that the Stroke-p2pHD model has great potential for clinical applications.
Humans
;
Tomography, X-Ray Computed/methods*
;
Diffusion Magnetic Resonance Imaging/methods*
;
Cerebral Infarction/diagnostic imaging*
;
Stroke/diagnostic imaging*
;
Neural Networks, Computer
;
Image Processing, Computer-Assisted/methods*
;
Algorithms
5.Efficacy evaluation of repeated transcranial magnetic stimulation combined with bipolar depression triple therapy in reducing female adolescents' non-suicidal self-injury.
Yun SHEN ; Jing LI ; Ke ZOU ; Kuanwei YANG ; Yanping SHU ; Zhong ZHENG
Journal of Biomedical Engineering 2025;42(2):288-292
In order to explore effective ways to reduce non-suicidal self-injury (NSSI) among female adolescents, a total of 45 female adolescent patients with NSSI in West China Hospital of Sichuan University and Guizhou Second Provincial People's Hospital from June 2021 to June 2024 were selected randomly that divided into groups A, B and C, with 15 cases in each group. Group A was treated with repeated transcranial magnetic stimulation (rTMS) and bipolar depression triple therapy, and group B was treated with bipolar depression triple therapy to compare the effectiveness and safety. Group C received bipolar depression triple therapy combined with sham stimulation which only produced stimulating sounds but no stimulating magnetic field as a control in the study. After treatment, the Hamilton Anxiety Score (HAMA), Hamilton Depression Score (HAMD) and Nurses' Global Assessment of Suicide Risk (NGASR) in group A were significantly lower than those in group B and C ( P < 0.01). rTMS combined with bipolar depression triple therapy has a definite effect on reducing NSSI in female adolescents, which can reduce the incidence rate of short-term NSSI behavior in patients.
Humans
;
Female
;
Adolescent
;
Self-Injurious Behavior/prevention & control*
;
Transcranial Magnetic Stimulation/methods*
;
Bipolar Disorder/therapy*
;
Combined Modality Therapy
;
Treatment Outcome
6.Prefrontal dysfunction and mismatch negativity in adolescent depression: A multimodal fNIRS-ERP study.
Hongyi SUN ; Lin ZHANG ; Jing LI ; Zhenhua LI ; Jiaxi HUANG ; Zhong ZHENG ; Ke ZOU
Journal of Biomedical Engineering 2025;42(4):701-706
Early identification of adolescent depression requires objective biomarkers. This study investigated the functional near-infrared spectroscopy (fNIRS) activation patterns and mismatch negativity (MMN) characteristics in adolescents with first-episode mild-to-moderate depression. We enrolled 33 patients and 33 matched healthy controls, measuring oxyhemoglobin (Oxy-Hb) concentration in the frontal cortex during verbal fluency tasks via fNIRS, and recording MMN latency/amplitude at Fz/Cz electrodes using event-related potentials (ERP). Compared with healthy controls, the depression group showed significantly prolonged MMN latency [Fz: (227.88 ± 31.08) ms vs. (208.70 ± 25.35) ms, P < 0.01; Cz: (223.73 ± 29.03) ms vs. (204.18 ± 22.43) ms, P < 0.01], and obviously reduced Fz amplitude [(2.42 ± 2.18) μV vs. (5.65 ± 5.59) μV, P = 0.03]. A significant positive correlation was observed between MMN latencies at Fz and Cz electrodes ( P < 0.01). Oxy-Hb in left frontopolar prefrontal channels (CH15/17) was significantly decreased in patient group ( P < 0.05). Our findings suggest that adolescents with depression exhibit hypofunction in the left prefrontal cortex and impaired automatic sensory processing. The combined application of fNIRS and ERP techniques may provide an objective basis for early clinical identification.
Humans
;
Spectroscopy, Near-Infrared/methods*
;
Adolescent
;
Prefrontal Cortex/physiopathology*
;
Evoked Potentials/physiology*
;
Depression/physiopathology*
;
Female
;
Male
;
Oxyhemoglobins
;
Electroencephalography
7.A method for emotion transition recognition using cross-modal feature fusion and global perception.
Lilin JIE ; Yangmeng ZOU ; Zhengxiu LI ; Baoliang LYU ; Weilong ZHENG ; Ming LI
Journal of Biomedical Engineering 2025;42(5):977-986
Current studies on electroencephalogram (EEG) emotion recognition primarily concentrate on discrete stimulus paradigms under controlled laboratory settings, which cannot adequately represent the dynamic transition characteristics of emotional states during multi-context interactions. To address this issue, this paper proposes a novel method for emotion transition recognition that leverages a cross-modal feature fusion and global perception network (CFGPN). Firstly, an experimental paradigm encompassing six types of emotion transition scenarios was designed, and EEG and eye movement data were simultaneously collected from 20 participants, each annotated with dynamic continuous emotion labels. Subsequently, deep canonical correlation analysis integrated with a cross-modal attention mechanism was employed to fuse features from EEG and eye movement signals, resulting in multimodal feature vectors enriched with highly discriminative emotional information. These vectors are then input into a parallel hybrid architecture that combines convolutional neural networks (CNNs) and Transformers. The CNN is employed to capture local time-series features, whereas the Transformer leverages its robust global perception capabilities to effectively model long-range temporal dependencies, enabling accurate dynamic emotion transition recognition. The results demonstrate that the proposed method achieves the lowest mean square error in both valence and arousal recognition tasks on the dynamic emotion transition dataset and a classic multimodal emotion dataset. It exhibits superior recognition accuracy and stability when compared with five existing unimodal and six multimodal deep learning models. The approach enhances both adaptability and robustness in recognizing emotional state transitions in real-world scenarios, showing promising potential for applications in the field of biomedical engineering.
Humans
;
Emotions/physiology*
;
Electroencephalography
;
Neural Networks, Computer
;
Eye Movements
;
Perception
8.Autophagy in erectile dysfunction: focusing on apoptosis and fibrosis.
Pei-Yue LUO ; Jun-Rong ZOU ; Tao CHEN ; Jun ZOU ; Wei LI ; Qi CHEN ; Le CHENG ; Li-Ying ZHENG ; Biao QIAN
Asian Journal of Andrology 2025;27(2):166-176
In most types of erectile dysfunction, particularly in advanced stages, typical pathological features observed are reduced parenchymal cells coupled with increased tissue fibrosis. However, the current treatment methods have shown limited success in reversing these pathologic changes. Recent research has revealed that changes in autophagy levels, along with alterations in apoptosis and fibrosis-related proteins, are linked to the progression of erectile dysfunction, suggesting a significant association. Autophagy, known to significantly affect cell fate and tissue fibrosis, is currently being explored as a potential treatment modality for erectile dysfunction. However, these present studies are still in their nascent stage, and there are limited experimental data available. This review analyzes erectile dysfunction from a pathological perspective. It provides an in-depth overview of how autophagy is involved in the apoptotic processes of smooth muscle and endothelial cells and its role in the fibrotic processes occurring in the cavernosum. This study aimed to develop a theoretical framework for the potential effectiveness of autophagy in preventing and treating erectile dysfunction, thus encouraging further investigation among researchers in this area.
Male
;
Humans
;
Autophagy/physiology*
;
Apoptosis/physiology*
;
Erectile Dysfunction/physiopathology*
;
Fibrosis
;
Penis/pathology*
;
Animals
;
Endothelial Cells/pathology*
;
Myocytes, Smooth Muscle/pathology*
9.A novel homozygous mutation of CFAP300 identified in a Chinese patient with primary ciliary dyskinesia and infertility.
Zheng ZHOU ; Qi QI ; Wen-Hua WANG ; Jie DONG ; Juan-Juan XU ; Yu-Ming FENG ; Zhi-Chuan ZOU ; Li CHEN ; Jin-Zhao MA ; Bing YAO
Asian Journal of Andrology 2025;27(1):113-119
Primary ciliary dyskinesia (PCD) is a clinically rare, genetically and phenotypically heterogeneous condition characterized by chronic respiratory tract infections, male infertility, tympanitis, and laterality abnormalities. PCD is typically resulted from variants in genes encoding assembly or structural proteins that are indispensable for the movement of motile cilia. Here, we identified a novel nonsense mutation, c.466G>T, in cilia- and flagella-associated protein 300 ( CFAP300 ) resulting in a stop codon (p.Glu156*) through whole-exome sequencing (WES). The proband had a PCD phenotype with laterality defects and immotile sperm flagella displaying a combined loss of the inner dynein arm (IDA) and outer dynein arm (ODA). Bioinformatic programs predicted that the mutation is deleterious. Successful pregnancy was achieved through intracytoplasmic sperm injection (ICSI). Our results expand the spectrum of CFAP300 variants in PCD and provide reproductive guidance for infertile couples suffering from PCD caused by them.
Adult
;
Female
;
Humans
;
Male
;
Pregnancy
;
China
;
Ciliary Motility Disorders/genetics*
;
Codon, Nonsense
;
East Asian People/genetics*
;
Exome Sequencing
;
Homozygote
;
Infertility, Male/genetics*
;
Kartagener Syndrome/genetics*
;
Pedigree
;
Sperm Injections, Intracytoplasmic
;
Cytoskeletal Proteins/genetics*
10.Clinical characteristics of epilepsy with intellectual disability associated with SETD1B gene in three pediatric cases and a literature review.
Ying LI ; Zou PAN ; Zhuo ZHENG ; Sa-Ying ZHU ; Qiang GONG ; Fei YIN ; Jing PENG ; Chen CHEN
Chinese Journal of Contemporary Pediatrics 2025;27(5):574-579
OBJECTIVES:
To summarize the clinical and genetic characteristics of epilepsy with intellectual disability caused by SETD1B gene variants in children.
METHODS:
A retrospective analysis was conducted on the clinical data of three children with SETD1B gene variants diagnosed and treated at the Department of Pediatric Neurology of Xiangya Hospital of Central South University. Relevant literature was reviewed to summarize the clinical characteristics of this condition.
RESULTS:
All three children presented with symptoms during infancy or early childhood, including mild intellectual disability and myoclonic seizures, with two cases exhibiting eyelid myoclonia. After treatment with three or more antiepileptic drugs, two cases achieved seizure control or partial control, while one case remained refractory. Each of the three children was found to have a heterozygous variant in the SETD1B gene (one deletion, one frameshift, and one missense variant). To date, 54 cases with SETD1B gene variants have been reported, involving a total of 56 variants, predominantly missense variants (64%, 36/56). The main clinical manifestations included varying degrees of developmental delay (96%, 52/54) and seizures (81%, 44/54). Among the 44 patients with seizures, myoclonic (20%, 9/44) and absence seizures (34%, 15/44) were common, with eyelid myoclonia reported in six cases. Approximately one-fifth of these patients had poorly controlled seizures.
CONCLUSIONS
The primary phenotypes associated with SETD1B gene variants are intellectual disability and seizures, and seizures exhibit distinct characteristics. Eyelid myoclonia is not uncommon.
Humans
;
Intellectual Disability/complications*
;
Epilepsy/complications*
;
Male
;
Female
;
Histone-Lysine N-Methyltransferase/genetics*
;
Child, Preschool
;
Child
;
Retrospective Studies

Result Analysis
Print
Save
E-mail