1.Optimizing extraction of microbial DNA from urine: Advancing urinary microbiome research in bladder cancer
Chuang-Ming ZHENG ; Ho Won KANG ; Seongmin MOON ; Young Joon BYUN ; Won Tae KIM ; Yung Hyun CHOI ; Sung-Kwon MOON ; Xuan-Mei PIAO ; Seok Joong YUN
Investigative and Clinical Urology 2025;66(3):272-280
Purpose:
This study aimed to evaluate and optimize microbial DNA extraction methods from urine, a non-invasive sample source, to enhance DNA quality, purity, and reliability for urinary microbiome research and biomarker discovery in bladder cancer.
Materials and Methods:
A total of 302 individuals (258 with genitourinary cancers and 44 with benign urologic diseases) participated in this study. Urine samples were collected via sterile catheterization, resulting in 445 vials for microbial analysis. DNA extraction was performed using three protocols: the standard protocol (SP), water dilution protocol (WDP), and chelation-assisted protocol (CAP). DNA quality (concentration, purity, and contamination levels) was assessed using NanoDrop spectrophotometry.Microbial analysis was conducted on 138 samples (108 cancerous and 30 benign) using 16S rRNA sequencing. Prior to sequencing on the Illumina MiSeq platform, Victor 3 fluorometry was used for validation.
Results:
WDP outperformed other methods, achieving significantly higher 260/280 and 260/230 ratios, indicating superior DNA purity and reduced contamination, while maintaining reliable DNA yields. CAP was excluded due to poor performance across all metrics. Microbial abundance was significantly higher in WDP-extracted samples (p<0.0001), whereas SP demonstrated higher alpha diversity indices (p<0.01), likely due to improved detection of low-abundance taxa. Beta diversity analysis showed no significant compositional differences between SP and WDP (p=1.0), supporting the reliability of WDP for microbiome research.
Conclusions
WDP is a highly effective and reliable method for microbial DNA extraction from urine, ensuring high-quality and reproducible results. Future research should address sample variability and crystal precipitation to further refine microbiome-based diagnostics and therapeutics.
2.Analysis and evaluation of platelet bank establishment strategy from the perspective of donor loss
Zheng LIU ; Yamin SUN ; Xin PENG ; Yiqing KANG ; Ziqing WANG ; Jintong ZHU ; Juan DU ; Jianbin LI
Chinese Journal of Blood Transfusion 2025;38(2):238-243
[Objective] To analyze the loss rate of platelet donors and evaluate the strategies for establishing a platelet donor bank. [Methods] A total of 1 443 donors who joined the HLA and HPA gene donor bank for platelets in Henan Province from 2018 to 2020 were included in this study. Data on the total number of apheresis platelet donations, annual donation frequency, age at enrollment, donation habits (including the number of platelets donated per session and whether they had previously donated whole blood), and enrollment location were collected from the platelet donor information management system. Donor loss was determined based on the date of their last donation. The loss rates of different groups under various conditions were compared to assess the enrollment strategies. [Results] By the time the platelet bank was officially operational in 2022, 421 donors had been lost, resulting in an loss rate of 29% (421/1 443). By the end of 2023, the overall cumulative loss rate reached 52% (746/1 443). The loss rate was lower than the overall level in groups meeting any of the following conditions: total apheresis platelet donations exceeding 50, annual donation frequency of 10 or more, age at enrollment of 40 years or older, donation of more than a single therapeutic dose per session, or a history of whole blood donation two or more times. Additionally, loss rates varied across different enrollment locations, with higher enrollment numbers generally associated with higher loss rates. [Conclusion] Through a comprehensive analysis of donor loss, our center has adjusted its strategies for establishing the donor pool. These findings also provide valuable insights for other blood collection and supply institutions in building platelet donor banks.
3.Progress in the application of poloxamer in new preparation technology
Xue QI ; Yi CHENG ; Nan LIU ; Zengming WANG ; Hui ZHANG ; Aiping ZHENG ; Dongzhou KANG
China Pharmacy 2025;36(5):630-635
Poloxamer, as a non-ionic surfactant, exhibits a unique triblock [polyethylene oxide-poly (propylene oxide)-polyethylene oxide] structure, which endows it with broad application potential in various fields, including solid dispersion technology, nanotechnology, gel technology, biologics, gene engineering and 3D printing. As a carrier, it enhances the solubility and bioavailability of poorly soluble drugs. In the field of nanotechnology, it serves as a stabilizer etc., enriching preparation methods. In gel technology, its self-assembly behavior and thermosensitive properties facilitate controlled drug release. In biologics, it improves targeting efficiency and reduces side effects. In gene engineering, it enhances delivery efficiency and expression levels. In 3D printing, it provides novel strategies for precise drug release control and the production of high-quality biological products. As a versatile material, poloxamer holds promising prospects in the pharmaceutical field.
4.Investigation on an outbreak of acute hemorrhagic conjunctivitis at a boarding middle school in Guangdong Province
Chinese Journal of School Health 2025;46(6):878-882
Objective:
To investigate the characteristics and risk factors of an outbreak of acute hemorrhagic conjunctivitis (AHC) in a boarding middle school in Guangdong Province, in order to provide a scientific evidence for effective prevention and control of campus AHC outbreaks.
Methods:
From September 1st to 28th 2023, case identification was conducted among 559 students and 60 faculty members using standardized definition. Descriptive analysis was conducted on the three distrubution patterns of the outbreak. Questionnaires were designed, and a case-control study was adopted to analyze the possible risk factors of the disease transmission. The propensity score matching (PSM) method was used to control the difference of baseline data.
Results:
A total of 269 cases of AHC were identified, with an attack rate of 43.46%. The pathogen was confirmed as Coxsackie virus A24 variant (CA24v). Among these, 264 cases were students (attack rate of 47.23%) and 5 were staff (attack rate of 8.33%). A total of 153 pairs of PSM were successfully matched. After PSM matching, there were no statistically significant differences in gender, grade and class between the case group and the control group ( χ 2=0.12, 5.41, 11.24, P >0.05). The results of multivariate Logistic regression analysis showed that middle school students whose towels contacted with others ( OR =1.81), and direct contact with other AHC cases recently ( OR =4.89) were more likely to have AHC; while wearing glasses ( OR =0.43) and frequent use of hand sanitizer ( OR = 0.37 ) were less likely to have AHC ( P <0.05).
Conclusion
The outbreak of AHC is caused by CA24v, demonstrating rapid spread and extensive impact within the school setting.
5.Recommendations for Standardized Reporting of Systematic Reviews and Meta-Analysis of Animal Experiments
Qingyong ZHENG ; Donghua YANG ; Zhichao MA ; Ziyu ZHOU ; Yang LU ; Jingyu WANG ; Lina XING ; Yingying KANG ; Li DU ; Chunxiang ZHAO ; Baoshan DI ; Jinhui TIAN
Laboratory Animal and Comparative Medicine 2025;45(4):496-507
Animal experiments are an essential component of life sciences and medical research. However, the external validity and reliability of individual animal studies are frequently challenged by inherent limitations such as small sample sizes, high design heterogeneity, and poor reproducibility, which impede the effective translation of research findings into clinical practice. Systematic reviews and meta-analysis represent a key methodology for integrating existing evidence and enhancing the robustness of conclusions. Currently, however, the application of systematic reviews and meta-analysis in the field of animal experiments lacks standardized guidelines for their conduct and reporting, resulting in inconsistent quality and, to some extent, diminishing their evidence value. To address this issue, this paper aims to systematically delineate the reporting process for systematic reviews and meta-analysis of animal experiments and to propose a set of standardized recommendations that are both scientific and practical. The article's scope encompasses the entire process, from the preliminary preparatory phase [including formulating the population, intervention, comparison and outcome (PICO) question, assessing feasibility, and protocol pre-registration] to the key writing points for each section of the main report. In the core methods section, the paper elaborates on how to implement literature searches, establish eligibility criteria, perform data extraction, and assess the risk of bias, based on the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) statement, in conjunction with relevant guidelines and tools such as Animal Research: Reporting of in Vivo Experiments (ARRIVE) and a risk of bias assessment tool developed by the Systematic Review Centre for Laboratory Animal Experimentation (SYRCLE). For the presentation of results, strategies are proposed for clear and transparent display using flow diagrams and tables of characteristics. The discussion section places particular emphasis on how to scientifically interpret pooled effects, thoroughly analyze sources of heterogeneity, evaluate the impact of publication bias, and cautiously discuss the validity and limitations of extrapolating findings from animal studies to clinical settings. Furthermore, this paper recommends adopting the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology to comprehensively grade the quality of evidence. Through a modular analysis of the entire reporting process, this paper aims to provide researchers in the field with a clear and practical guide, thereby promoting the standardized development of systematic reviews and meta-analysis of animal experiments and enhancing their application value in scientific decision-making and translational medicine.
6.Research progress of heme oxygenase-1 in neurodegenerative diseases
Shuai-Tian YANG ; Jun-Yao FEI ; Nuo XU ; Yong-Kang YIN ; Yu-Jia JIANG ; Zheng NIE
Journal of Regional Anatomy and Operative Surgery 2024;33(5):460-463
Heme oxygenase-1(HO-1)is an inducible heme oxygenase and a catalytic enzyme for heme decomposition reactions,which can catalyze the heme decomposition into CO,biliverdin and Fe2+.HO-1 and its metabolites have anti-inflammatory,antioxidant and anti-apoptotic effects in human body,and play an important role in neurodegenerative diseases such as Alzheimer's disease,Parkinson's disease,amyotrophic lateral sclerosis,and Huntington's disease.This article will review the production,distribution,and gene structure of HO-1,the biological characteristics of its metabolites,and the role and mechanism of HO-1 in neurodegenerative diseases,in order to provide a theoretical basis for the clinical application of HO-1.
7.Surveillance of bacterial resistance in tertiary hospitals across China:results of CHINET Antimicrobial Resistance Surveillance Program in 2022
Yan GUO ; Fupin HU ; Demei ZHU ; Fu WANG ; Xiaofei JIANG ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Yuling XIAO ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Jingyong SUN ; Qing CHEN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yunmin XU ; Sufang GUO ; Yanyan WANG ; Lianhua WEI ; Keke LI ; Hong ZHANG ; Fen PAN ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Wei LI ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Qian SUN ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanqing ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Wenhui HUANG ; Juan LI ; Quangui SHI ; Juan YANG ; Abulimiti REZIWAGULI ; Lili HUANG ; Xuejun SHAO ; Xiaoyan REN ; Dong LI ; Qun ZHANG ; Xue CHEN ; Rihai LI ; Jieli XU ; Kaijie GAO ; Lu XU ; Lin LIN ; Zhuo ZHANG ; Jianlong LIU ; Min FU ; Yinghui GUO ; Wenchao ZHANG ; Zengguo WANG ; Kai JIA ; Yun XIA ; Shan SUN ; Huimin YANG ; Yan MIAO ; Mingming ZHOU ; Shihai ZHANG ; Hongjuan LIU ; Nan CHEN ; Chan LI ; Jilu SHEN ; Wanqi MEN ; Peng WANG ; Xiaowei ZHANG ; Yanyan LIU ; Yong AN
Chinese Journal of Infection and Chemotherapy 2024;24(3):277-286
Objective To monitor the susceptibility of clinical isolates to antimicrobial agents in tertiary hospitals in major regions of China in 2022.Methods Clinical isolates from 58 hospitals in China were tested for antimicrobial susceptibility using a unified protocol based on disc diffusion method or automated testing systems.Results were interpreted using the 2022 Clinical &Laboratory Standards Institute(CLSI)breakpoints.Results A total of 318 013 clinical isolates were collected from January 1,2022 to December 31,2022,of which 29.5%were gram-positive and 70.5%were gram-negative.The prevalence of methicillin-resistant strains in Staphylococcus aureus,Staphylococcus epidermidis and other coagulase-negative Staphylococcus species(excluding Staphylococcus pseudintermedius and Staphylococcus schleiferi)was 28.3%,76.7%and 77.9%,respectively.Overall,94.0%of MRSA strains were susceptible to trimethoprim-sulfamethoxazole and 90.8%of MRSE strains were susceptible to rifampicin.No vancomycin-resistant strains were found.Enterococcus faecalis showed significantly lower resistance rates to most antimicrobial agents tested than Enterococcus faecium.A few vancomycin-resistant strains were identified in both E.faecalis and E.faecium.The prevalence of penicillin-susceptible Streptococcus pneumoniae was 94.2%in the isolates from children and 95.7%in the isolates from adults.The resistance rate to carbapenems was lower than 13.1%in most Enterobacterales species except for Klebsiella,21.7%-23.1%of which were resistant to carbapenems.Most Enterobacterales isolates were highly susceptible to tigecycline,colistin and polymyxin B,with resistance rates ranging from 0.1%to 13.3%.The prevalence of meropenem-resistant strains decreased from 23.5%in 2019 to 18.0%in 2022 in Pseudomonas aeruginosa,and decreased from 79.0%in 2019 to 72.5%in 2022 in Acinetobacter baumannii.Conclusions The resistance of clinical isolates to the commonly used antimicrobial agents is still increasing in tertiary hospitals.However,the prevalence of important carbapenem-resistant organisms such as carbapenem-resistant K.pneumoniae,P.aeruginosa,and A.baumannii showed a downward trend in recent years.This finding suggests that the strategy of combining antimicrobial resistance surveillance with multidisciplinary concerted action works well in curbing the spread of resistant bacteria.
8.Changing distribution and resistance profiles of common pathogens isolated from urine in the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Yanming LI ; Mingxiang ZOU ; Wen'en LIU ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Fengbo ZHANG ; Ping JI ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WENG ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):287-299
Objective To investigate the distribution and antimicrobial resistance profiles of the common pathogens isolated from urine from 2015 to 2021 in the CHINET Antimicrobial Resistance Surveillance Program.Methods The bacterial strains were isolated from urine and identified routinely in 51 hospitals across China in the CHINET Antimicrobial Resistance Surveillance Program from 2015 to 2021.Antimicrobial susceptibility was determined by Kirby-Bauer method,automatic microbiological analysis system and E-test according to the unified protocol.Results A total of 261 893 nonduplicate strains were isolated from urine specimen from 2015 to 2021,of which gram-positive bacteria accounted for 23.8%(62 219/261 893),and gram-negative bacteria 76.2%(199 674/261 893).The most common species were E.coli(46.7%),E.faecium(10.4%),K.pneumoniae(9.8%),E.faecalis(8.7%),P.mirabilis(3.5%),P.aeruginosa(3.4%),SS.agalactiae(2.6%),and E.cloacae(2.1%).The strains were more frequently isolated from inpatients versus outpatients and emergency patients,from females versus males,and from adults versus children.The prevalence of ESBLs-producing strains in E.coli,K.pneumoniae and P.mirabilis was 53.2%,52.8%and 37.0%,respectively.The prevalence of carbapenem-resistant strains in E.coli,K.pneumoniae,P.aeruginosa and A.baumannii was 1.7%,18.5%,16.4%,and 40.3%,respectively.Lower than 10%of the E.faecalis isolates were resistant to ampicillin,nitrofurantoin,linezolid,vancomycin,teicoplanin and fosfomycin.More than 90%of the E.faecium isolates were ressitant to ampicillin,levofloxacin and erythromycin.The percentage of strains resistant to vancomycin,linezolid or teicoplanin was<2%.The E.coli,K.pneumoniae,P.aeruginosa and A.baumannii strains isolated from ICU inpatients showed significantly higher resistance rates than the corresponding strains isolated from outpatients and non-ICU inpatients.Conclusions E.coli,Enterococcus and K.pneumoniae are the most common pathogens in urinary tract infection.The bacterial species and antimicrobial resistance of urinary isolates vary with different populations.More attention should be paid to antimicrobial resistance surveillance and reduce the irrational use of antimicrobial agents.
9.Changing resistance profiles of Enterococcus in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Na CHEN ; Ping JI ; Yang YANG ; Fupin HU ; Demei ZHU ; Yingchun XU ; Xiaojiang ZHANG ; Yi XIE ; Mei KANG ; Chuanqing WANG ; Pan FU ; Yuanhong XU ; Ying HUANG ; Ziyong SUN ; Zhongju CHEN ; Yuxing NI ; Jingyong SUN ; Yunzhuo CHU ; Sufei TIAN ; Zhidong HU ; Jin LI ; Yunsong YU ; Jie LIN ; Bin SHAN ; Yan DU ; Sufang GUO ; Lianhua WEI ; Fengmei ZOU ; Hong ZHANG ; Chun WANG ; Yunjian HU ; Xiaoman AI ; Chao ZHUO ; Danhong SU ; Dawen GUO ; Jinying ZHAO ; Hua YU ; Xiangning HUANG ; Wen'en LIU ; Yanming LI ; Yan JIN ; Chunhong SHAO ; Xuesong XU ; Chao YAN ; Shanmei WANG ; Yafei CHU ; Lixia ZHANG ; Juan MA ; Shuping ZHOU ; Yan ZHOU ; Lei ZHU ; Jinhua MENG ; Fang DONG ; Zhiyong LÜ ; Fangfang HU ; Han SHEN ; Wanqing ZHOU ; Wei JIA ; Gang LI ; Jinsong WU ; Yuemei LU ; Jihong LI ; Jinju DUAN ; Jianbang KANG ; Xiaobo MA ; Yanping ZHENG ; Ruyi GUO ; Yan ZHU ; Yunsheng CHEN ; Qing MENG ; Shifu WANG ; Xuefei HU ; Jilu SHEN ; Ruizhong WANG ; Hua FANG ; Bixia YU ; Yong ZHAO ; Ping GONG ; Kaizhen WEN ; Yirong ZHANG ; Jiangshan LIU ; Longfeng LIAO ; Hongqin GU ; Lin JIANG ; Wen HE ; Shunhong XUE ; Jiao FENG ; Chunlei YUE
Chinese Journal of Infection and Chemotherapy 2024;24(3):300-308
Objective To understand the distribution and changing resistance profiles of clinical isolates of Enterococcus in hospitals across China from 2015 to 2021.Methods Antimicrobial susceptibility testing was conducted for the clinical isolates of Enterococcus according to the unified protocol of CHINET program by automated systems,Kirby-Bauer method,or E-test strip.The results were interpreted according to the Clinical & Laboratory Standards Institute(CLSI)breakpoints in 2021.WHONET 5.6 software was used for statistical analysis.Results A total of 124 565 strains of Enterococcus were isolated during the 7-year period,mainly including Enterococcus faecalis(50.7%)and Enterococcus faecalis(41.5%).The strains were mainly isolated from urinary tract specimens(46.9%±2.6%),and primarily from the patients in the department of internal medicine,surgery and ICU.E.faecium and E.faecalis strains showed low level resistance rate to vancomycin,teicoplanin and linezolid(≤3.6%).The prevalence of vancomycin-resistant E.faecalis and E.faecium was 0.1%and 1.3%,respectively.The prevalence of linezolid-resistant E.faecalis increased from 0.7%in 2015 to 3.4%in 2021,while the prevalence of linezolid-resistant E.faecium was 0.3%.Conclusions The clinical isolates of Enterococcus were still highly susceptible to vancomycin,teicoplanin,and linezolid,evidenced by a low resistance rate.However,the prevalence of linezolid-resistant E.faecalis was increasing during the 7-year period.It is necessary to strengthen antimicrobial resistance surveillance to effectively identify the emergence of antibiotic-resistant bacteria and curb the spread of resistant pathogens.
10.Changing resistance profiles of Enterobacter isolates in hospitals across China:results from the CHINET Antimicrobial Resistance Surveillance Program,2015-2021
Shaozhen YAN ; Ziyong SUN ; Zhongju CHEN ; Yang YANG ; Fupin HU ; Demei ZHU ; Yi XIE ; Mei KANG ; Fengbo ZHANG ; Ping JI ; Zhidong HU ; Jin LI ; Sufang GUO ; Han SHEN ; Wanqing ZHOU ; Yingchun XU ; Xiaojiang ZHANG ; Xuesong XU ; Chao YAN ; Chuanqing WANG ; Pan FU ; Wei JIA ; Gang LI ; Yuanhong XU ; Ying HUANG ; Dawen GUO ; Jinying ZHAO ; Wen'en LIU ; Yanming LI ; Hua YU ; Xiangning HUANG ; Bin SHAN ; Yan DU ; Shanmei WANG ; Yafei CHU ; Yuxing NI ; Jingyong SUN ; Yunsong YU ; Jie LIN ; Chao ZHUO ; Danhong SU ; Lianhua WEI ; Fengmei ZOU ; Yan JIN ; Chunhong SHAO ; Jihong LI ; Lixia ZHANG ; Juan MA ; Yunzhuo CHU ; Sufei TIAN ; Jinju DUAN ; Jianbang KANG ; Ruizhong WANG ; Hua FANG ; Fangfang HU ; Yunjian HU ; Xiaoman AI ; Fang DONG ; Zhiyong LÜ ; Hong ZHANG ; Chun WANG ; Yong ZHAO ; Ping GONG ; Lei ZHU ; Jinhua MENG ; Xiaobo MA ; Yanping ZHENG ; Jinsong WU ; Yuemei LU ; Ruyi GUO ; Yan ZHU ; Kaizhen WEN ; Yirong ZHANG ; Chunlei YUE ; Jiangshan LIU ; Wenhui HUANG ; Shunhong XUE ; Xuefei HU ; Hongqin GU ; Jiao FENG ; Shuping ZHOU ; Yan ZHOU ; Yunsheng CHEN ; Qing MENG ; Bixia YU ; Jilu SHEN ; Rui DOU ; Shifu WANG ; Wen HE ; Longfeng LIAO ; Lin JIANG
Chinese Journal of Infection and Chemotherapy 2024;24(3):309-317
Objective To examine the changing antimicrobial resistance profile of Enterobacter spp.isolates in 53 hospitals across China from 2015 t0 2021.Methods The clinical isolates of Enterobacter spp.were collected from 53 hospitals across China during 2015-2021 and tested for antimicrobial susceptibility using Kirby-Bauer method or automated testing systems according to the CHINET unified protocol.The results were interpreted according to the breakpoints issued by the Clinical & Laboratory Standards Institute(CLSI)in 2021(M100 31st edition)and analyzed with WHONET 5.6 software.Results A total of 37 966 Enterobacter strains were isolated from 2015 to 2021.The proportion of Enterobacter isolates among all clinical isolates showed a fluctuating trend over the 7-year period,overall 2.5%in all clinical isolates amd 5.7%in Enterobacterale strains.The most frequently isolated Enterobacter species was Enterobacter cloacae,accounting for 93.7%(35 571/37 966).The strains were mainly isolated from respiratory specimens(44.4±4.6)%,followed by secretions/pus(16.4±2.3)%and urine(16.0±0.9)%.The strains from respiratory samples decreased slightly,while those from sterile body fluids increased over the 7-year period.The Enterobacter strains were mainly isolated from inpatients(92.9%),and only(7.1±0.8)%of the strains were isolated from outpatients and emergency patients.The patients in surgical wards contributed the highest number of isolates(24.4±2.9)%compared to the inpatients in any other departement.Overall,≤ 7.9%of the E.cloacae strains were resistant to amikacin,tigecycline,polymyxin B,imipenem or meropenem,while ≤5.6%of the Enterobacter asburiae strains were resistant to these antimicrobial agents.E.asburiae showed higher resistance rate to polymyxin B than E.cloacae(19.7%vs 3.9%).Overall,≤8.1%of the Enterobacter gergoviae strains were resistant to tigecycline,amikacin,meropenem,or imipenem,while 10.5%of these strains were resistant to polycolistin B.The overall prevalence of carbapenem-resistant Enterobacter was 10.0%over the 7-year period,but showing an upward trend.The resistance profiles of Enterobacter isolates varied with the department from which they were isolated and whether the patient is an adult or a child.The prevalence of carbapenem-resistant E.cloacae was the highest in the E.cloacae isolates from ICU patients.Conclusions The results of the CHINET Antimicrobial Resistance Surveillance Program indicate that the proportion of Enterobacter strains in all clinical isolates fluctuates slightly over the 7-year period from 2015 to 2021.The Enterobacter strains showed increasing resistance to multiple antimicrobial drugs,especially carbapenems over the 7-year period.


Result Analysis
Print
Save
E-mail