1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
3.Mechanism of Qingrun Decoction in alleviating hepatic insulin resistance in type 2 diabetic rats based on amino acid metabolism reprogramming pathways.
Xiang-Wei BU ; Xiao-Hui HAO ; Run-Yun ZHANG ; Mei-Zhen ZHANG ; Ze WANG ; Hao-Shuo WANG ; Jie WANG ; Qing NI ; Lan LIN
China Journal of Chinese Materia Medica 2025;50(12):3377-3388
This study aims to investigate the mechanism of Qingrun Decoction in alleviating hepatic insulin resistance in type 2 diabetes mellitus(T2DM) rats through the reprogramming of amino acid metabolism. A T2DM rat model was established by inducing insulin resistance through a high-fat diet combined with intraperitoneal injection of streptozotocin. The model rats were randomly divided into five groups: model group, high-, medium-, and low-dose Qingrun Decoction groups, and metformin group. A normal control group was also established. The rats in the normal and model groups received 10 mL·kg~(-1) distilled water daily by gavage. The metformin group received 150 mg·kg~(-1) metformin suspension by gavage, and the Qingrun Decoction groups received 11.2, 5.6, and 2.8 g·kg~(-1) Qingrun Decoction by gavage for 8 weeks. Blood lipid levels were measured in different groups of rats. Pathological damage in rat liver tissue was assessed by hematoxylin-eosin(HE) staining and oil red O staining. Transcriptome sequencing and untargeted metabolomics were performed on rat liver and serum samples, integrated with bioinformatics analyses. Key metabolites(branched-chain amino acids, BCAAs), amino acid transporters, amino acid metabolites, critical enzymes for amino acid metabolism, resistin, adiponectin(ADPN), and mammalian target of rapamycin(mTOR) pathway-related molecules were quantified using quantitative real-time polymerase chain reaction(qRT-PCR), Western blot, and enzyme-linked immunosorbent assay(ELISA). The results showed that compared with the normal group, the model group had significantly increased serum levels of total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), and resistin and significantly decreased ADPN levels. Hepatocytes in the model group exhibited loose arrangement, significant lipid accumulation, fatty degeneration, and pronounced inflammatory cell infiltration. In liver tissue, the mRNA transcriptional levels of solute carrier family 7 member 2(Slc7a2), solute carrier family 38 member 2(Slc38a2), solute carrier family 38 member 4(Slc38a4), and arginase(ARG) were significantly downregulated, while the mRNA transcriptional levels of solute carrier family 1 member 4(Slc1a4), solute carrier family 16 member 1(Slc16a1), and methionine adenosyltransferase(MAT) were upregulated. Furthermore, the mRNA transcription and protein expression levels of branched-chain α-keto acid dehydrogenase E1α(BCKDHA) and DEP domain-containing mTOR-interacting protein(DEPTOR) were downregulated, while mRNA transcription and protein expression levels of mTOR, as well as ribosomal protein S6 kinase 1(S6K1), were upregulated. The levels of BCAAs and S-adenosyl-L-methionine(SAM) were elevated. The serum level of 6-hydroxymelatonin was significantly reduced, while imidazole-4-one-5-propionic acid and N-(5-phospho-D-ribosyl)anthranilic acid levels were significantly increased. Compared with the model group, Qingrun Decoction significantly reduced blood lipid and resistin levels while increasing ADPN levels. Hepatocytes had improved morphology with reduced inflammatory cells, and fatty degeneration and lipid deposition were alleviated. Differentially expressed genes and differential metabolites were mainly enriched in amino acid metabolic pathways. The expression levels of Slc7a2, Slc38a2, Slc38a4, and ARG in the liver tissue were significantly upregulated, while Slc1a4, Slc16a1, and MAT expression levels were significantly downregulated. BCKDHA and DEPTOR expression levels were upregulated, while mTOR and S6K1 expression levels were downregulated. Additionally, the levels of BCAAs and SAM were significantly decreased. The serum level of 6-hydroxymelatonin was increased, while those of imidazole-4-one-5-propionic acid and N-(5-phospho-D-ribosyl)anthranilic acid were decreased. In summary, Qingrun Decoction may improve amino acid metabolism reprogramming, inhibit mTOR pathway activation, alleviate insulin resistance in the liver, and mitigate pathological damage of liver tissue in T2DM rats by downregulating hepatic BCAAs and SAM and regulating key enzymes involved in amino acid metabolism, such as BCKDHA, ARG, and MAT, as well as amino acid metabolites and transporters.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Insulin Resistance
;
Diabetes Mellitus, Type 2/genetics*
;
Male
;
Liver/drug effects*
;
Amino Acids/metabolism*
;
Rats, Sprague-Dawley
;
Humans
;
Metabolic Reprogramming
4.Comparative experimental study on the biomechanical properties of retrograde tibial nailing and distal tibia L-shaped plate in distal tibia fracture.
Xu-Ping LIN ; Qing-Jun LIU ; Sheng-Gui XU ; Cong ZHANG ; Ming-Ming GAO ; Zhen-Qi DING ; Bin LIN
China Journal of Orthopaedics and Traumatology 2025;38(7):737-742
OBJECTIVE:
To investigate the biomechanical characteristics of retrograde tibial nailing (RTN) and distal tibial L-shaped plating in the internal fixation of distal tibial fractures.
METHODS:
Fourteen fresh adult tibia specimens were selected, comprising 7 males and 7 females aged from 34 to 55 years old. The specimens were randomly divided into experimental group and control group by numerical table method with 7 specimens in each group. RTN was used for internal fixation of distal tibial fractures in the experimental group, and L-shaped plate was used for internal fixation of distal tibial fractures in the control group. The axial compression properties of the two groups of specimens were tested under the pressure of 100, 200, 300, 400, and 500 N after operation, and torsional resistance at torque levels of 1.0, 2.0, 3.0, 4.0, 5.0 N·m. The anti-fatigue performance of the specimens was tested at 500 N pressure for 3 000 and 10 000 cycles. X-ray fluoroscopy was performed to observe whether the the internal fixator was deformed and whether the screw was loosened or broken.
RESULTS:
When the pressure was 400 N and 500 N, the axial compression displacement of the experimental group was (1.11±0.06) mm and (1.24±0.05) mm, which were smaller than those of the control group (1.21±0.08) mm and (1.37±0.11) mm, and the differences were statistically signific (P<0.05). Under the pressure of 500 N, the axial compression stiffness of the experimental group was (389.24±17.79) N·mm-1, which was significantly higher than that of the control group (362.37±14.44) N·mm-1(P<0.05). When the torque was 4 and 5 N·m, the torsion angles of the experimental group were (2.97±0.23) ° and (3.41±0.17) °, which were smaller than those of the control group (3.31±0.28) ° and (3.76±0.20) °, and the differences were statistically significant (P<0.05). When the torque was 5 N·m, the torsional stiffness of the experimental group was (1.48±0.07) N·m per degree, which was higher than that of the control group (1.36±0.06) N·m per degree, and the difference was statistically significant (P<0.05). For the intragroup comparison of fatigue resistance, the differences in axial compression displacement between the two groups were not statistically significant at 3 000 and 10 000 cycles (all P>0.05). When 3 000 times and 10 000 times of compression, the axial compression displacement of the experimental group was (1.38±0.08), (1.43±0.07) mm, which was smaller than that of the control group (1.51±0.10), (1.54±0.08) mm, the differences were statistically significant (P<0.05). In the experimental group, no screw loosening, fracture or internal fixation deformation was found, while in the control group, locking screw loosening occurred in 2 models after 10 000 pressures.
CONCLUSION
The biomechanical performance of RTN is obviously better than that of the distal tibial L-shaped plate, which provides biomechanical data support for the clinical application of RTN.
Humans
;
Female
;
Male
;
Adult
;
Tibial Fractures/physiopathology*
;
Middle Aged
;
Biomechanical Phenomena
;
Bone Plates
;
Fracture Fixation, Internal/instrumentation*
;
Bone Nails
;
Tibia/surgery*
5.Dynamic changes in serum microRNA-15b and vascular endothelial growth factor in preterm infants with bronchopulmonary dysplasia and their value in assessing neurodevelopment.
Qian CHEN ; Pei-Pei ZHANG ; Qing-Hua LU ; Zhen-Xia WAN ; Lei HUANG
Chinese Journal of Contemporary Pediatrics 2025;27(9):1062-1070
OBJECTIVES:
To investigate the dynamic changes in serum microRNA-15b (miR-15b) and vascular endothelial growth factor (VEGF) in preterm infants with mild or moderate-to-severe bronchopulmonary dysplasia (BPD), as well as their value in assessing short-term neurodevelopment.
METHODS:
A retrospective analysis was conducted on the medical data of 156 preterm infants with BPD who were admitted to the neonatal intensive care unit from January 2020 to February 2023. According to the severity of BPD, they were divided into a mild group (n=88) and a moderate-to-severe group (n=68). Serum levels of miR-15b and VEGF were measured on postnatal days 1, 7, 14, and 28. Repeated measures analysis of variance was used to assess the dynamic changes in serum levels of miR-15b and VEGF. The mediating effect of VEGF between miR-15b and short-term neurological development was tested and analyzed using the stepwise regression method and the Bootstrap method. Logistic regression analysis was used to identify factors influencing adverse neurodevelopmental outcomes.
RESULTS:
In the mild group, there was a significant reduction in the serum level of miR-15b and a significant increase in VEGF over time (P<0.05), while in the moderate-to-severe group, there was a significant increase in miR-15b and a significant reduction in VEGF over time (P<0.05). Serum miR-15b and VEGF levels were important factors influencing neurodevelopmental outcomes, showing independent correlations (P<0.001). The mediating effect analysis indicated that miR-15b indirectly affected short-term neurodevelopment by inhibiting VEGF expression [indirect effect: -0.705 (95%CI: -1.178 to -0.372)], with the indirect effect accounting for 54.36% of the total effect.
CONCLUSIONS
There are different changing trends in serum levels of miR-15b and VEGF in preterm infants with mild and moderate-to-severe BPD. miR-15b primarily influences neurodevelopment through VEGF.
Humans
;
Bronchopulmonary Dysplasia/physiopathology*
;
MicroRNAs/blood*
;
Vascular Endothelial Growth Factor A/blood*
;
Infant, Newborn
;
Infant, Premature/blood*
;
Female
;
Male
;
Retrospective Studies
;
Child Development
;
Nervous System/growth & development*
6.The Valvular Heart Disease-specific Age-adjusted Comorbidity Index (VHD-ACI) score in patients with moderate or severe valvular heart disease.
Mu-Rong XIE ; Bin ZHANG ; Yun-Qing YE ; Zhe LI ; Qing-Rong LIU ; Zhen-Yan ZHAO ; Jun-Xing LV ; De-Jing FENG ; Qing-Hao ZHAO ; Hai-Tong ZHANG ; Zhen-Ya DUAN ; Bin-Cheng WANG ; Shuai GUO ; Yan-Yan ZHAO ; Run-Lin GAO ; Hai-Yan XU ; Yong-Jian WU
Journal of Geriatric Cardiology 2025;22(9):759-774
BACKGROUND:
Based on the China-VHD database, this study sought to develop and validate a Valvular Heart Disease- specific Age-adjusted Comorbidity Index (VHD-ACI) for predicting mortality risk in patients with VHD.
METHODS & RESULTS:
The China-VHD study was a nationwide, multi-centre multi-centre cohort study enrolling 13,917 patients with moderate or severe VHD across 46 medical centres in China between April-June 2018. After excluding cases with missing key variables, 11,459 patients were retained for final analysis. The primary endpoint was 2-year all-cause mortality, with 941 deaths (10.0%) observed during follow-up. The VHD-ACI was derived after identifying 13 independent mortality predictors: cardiomyopathy, myocardial infarction, chronic obstructive pulmonary disease, pulmonary artery hypertension, low body weight, anaemia, hypoalbuminaemia, renal insufficiency, moderate/severe hepatic dysfunction, heart failure, cancer, NYHA functional class and age. The index exhibited good discrimination (AUC, 0.79) and calibration (Brier score, 0.062) in the total cohort, outperforming both EuroSCORE II and ACCI (P < 0.001 for comparison). Internal validation through 100 bootstrap iterations yielded a C statistic of 0.694 (95% CI: 0.665-0.723) for 2-year mortality prediction. VHD-ACI scores, as a continuous variable (VHD-ACI score: adjusted HR (95% CI): 1.263 (1.245-1.282), P < 0.001) or categorized using thresholds determined by the Yoden index (VHD-ACI ≥ 9 vs. < 9, adjusted HR (95% CI): 6.216 (5.378-7.184), P < 0.001), were independently associated with mortality. The prognostic performance remained consistent across all VHD subtypes (aortic stenosis, aortic regurgitation, mitral stenosis, mitral regurgitation, tricuspid valve disease, mixed aortic/mitral valve disease and multiple VHD), and clinical subgroups stratified by therapeutic strategy, LVEF status (preserved vs. reduced), disease severity and etiology.
CONCLUSION
The VHD-ACI is a simple 13-comorbidity algorithm for the prediction of mortality in VHD patients and providing a simple and rapid tool for risk stratification.
7.Effect of Hesperidin on Chronic Unpredictable Mild Stress-Related Depression in Rats through Gut-Brain Axis Pathway.
Hui-Qing LIANG ; Shao-Dong CHEN ; Yu-Jie WANG ; Xiao-Ting ZHENG ; Yao-Yu LIU ; Zhen-Ying GUO ; Chun-Fang ZHANG ; Hong-Li ZHUANG ; Si-Jie CHENG ; Xiao-Hong GU
Chinese journal of integrative medicine 2025;31(10):908-917
OBJECTIVES:
To determine the pharmacological impact of hesperidin, the main component of Citri Reticulatae Pericarpium, on depressive behavior and elucidate the mechanism by which hesperidin treats depression, focusing on the gut-brain axis.
METHODS:
Fifty-four Sprague Dawley male rats were randomly allocated to 6 groups using a random number table, including control, model, hesperidin, probiotics, fluoxetine, and Citri Reticulatae Pericarpium groups. Except for the control group, rats in the remaining 5 groups were challenged with chronic unpredictable mild stress (CUMS) for 21 days and housed in single cages. The sucrose preference test (SPT), immobility time in the forced swim test (FST), and number in the open field test (OFT) were performed to measure the behavioral changes in the rats. Enzyme-linked immunosorbent assay was used to determine the levels of 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) in brain tissue, and the histopathology was performed to evaluate the changes of colon tissue, together with sequencing of the V3-V4 regions of 16S rRNA gene on feces to explore the changes of intestinal flora in the rats.
RESULTS:
Compared to the control group, the rats in the model group showed notable reductions in body weight, SPF, and number in OFT (P<0.01). Hesperidin was found to ameliorate depression induced by CUMS, as seen by improvements in body weight, SPT, immobility time in FST, and number in OFT (P<0.05 or P<0.01). Regarding neurotransmitters, it was found that at a dose of 50 mg/kg hesperidin treatment upregulated the levels of 5-HT and BDNF in depressed rats (P<0.05). Compared to the control group, the colon tissue of the model group exhibited greater inflammatory cell infiltration, with markedly reduced numbers of goblet cells and crypts and were significantly improved following treatment with hesperidin. Simultaneously, the administration of hesperidin demonstrated a positive impact on the gut microbiome of rats treated with CUMS, such as Shannon index increased and Simpson index decreased (P<0.01), while the abundance of Pseudomonadota and Bacteroidota increased in the hesperidin-treated group (P<0.05).
CONCLUSION
The mechanism responsible for the beneficial effects of hesperidin on depressive behavior in rats may be related to inhibition of the expressions of BDNF and 5-HT and preservation of the gut microbiota.
Animals
;
Hesperidin/therapeutic use*
;
Rats, Sprague-Dawley
;
Depression/drug therapy*
;
Male
;
Stress, Psychological/drug therapy*
;
Brain/metabolism*
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Serotonin/metabolism*
;
Gastrointestinal Microbiome/drug effects*
;
Behavior, Animal/drug effects*
;
Rats
;
Brain-Gut Axis/drug effects*
;
Chronic Disease
;
Colon/drug effects*
8.Brucea javanica Seed Oil Emulsion and Shengmai Injections Improve Peripheral Microcirculation in Treatment of Gastric Cancer.
Li QUAN ; Wen-Hao NIU ; Fu-Peng YANG ; Yan-da ZHANG ; Ru DING ; Zhi-Qing HE ; Zhan-Hui WANG ; Chang-Zhen REN ; Chun LIANG
Chinese journal of integrative medicine 2025;31(4):299-310
OBJECTIVE:
To explore and verify the effect and potential mechanism of Brucea javanica Seed Oil Emulsion Injection (YDZI) and Shengmai Injection (SMI) on peripheral microcirculation dysfunction in treatment of gastric cancer (GC).
METHODS:
The potential mechanisms of YDZI and SMI were explored through network pharmacology and verified by cellular and clinical experiments. Human microvascular endothelial cells (HMECs) were cultured for quantitative real-time polymerase chain reaction, Western blot analysis, and human umbilical vein endothelial cells (HUVECs) were cultured for tube formation assay. Twenty healthy volunteers and 97 patients with GC were enrolled. Patients were divided into surgical resection, surgical resection with chemotherapy, and surgical resection with chemotherapy combining YDZI and SMI groups. Forearm skin blood perfusion was measured and recorded by laser speckle contrast imaging coupled with post-occlusive reactive hyperemia. Cutaneous vascular conductance and microvascular reactivity parameters were calculated and compared across the groups.
RESULTS:
After network pharmacology analysis, 4 ingredients, 82 active compounds, and 92 related genes in YDZI and SMI were screened out. β-Sitosterol, an active ingredient and intersection compound of YDZI and SMI, upregulated the expression of vascular endothelial growth factor A (VEGFA) and prostaglandin-endoperoxide synthase 2 (PTGS2, P<0.01), downregulated the expression of caspase 9 (CASP9) and estrogen receptor 1 (ESR1, P<0.01) in HMECs under oxaliplatin stimulation, and promoted tube formation through VEGFA. Chemotherapy significantly impaired the microvascular reactivity in GC patients, whereas YDZI and SMI ameliorated this injury (P<0.05 or P<0.01).
CONCLUSIONS
YDZI and SMI ameliorated peripheral microvascular reactivity in GC patients. β-Sitosterol may improve peripheral microcirculation by regulating VEGFA, PTGS2, ESR1, and CASP9.
Humans
;
Microcirculation/drug effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Stomach Neoplasms/physiopathology*
;
Emulsions
;
Male
;
Plant Oils/administration & dosage*
;
Brucea/chemistry*
;
Middle Aged
;
Female
;
Drug Combinations
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Seeds/chemistry*
;
Injections
;
Vascular Endothelial Growth Factor A/metabolism*
;
Aged
;
Network Pharmacology
9.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
10.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.

Result Analysis
Print
Save
E-mail