1.Research progress of natural product evodiamine-based antitumor drug design strategies
Zhe-wei XIA ; Yu-hang SUN ; Tian-le HUANG ; Hua SUN ; Yu-ping CHEN ; Chun-quan SHENG ; Shan-chao WU
Acta Pharmaceutica Sinica 2024;59(3):532-542
Natural products are important sources for the discovery of anti-tumor drugs. Evodiamine is the main alkaloid component of the traditional Chinese herb Wu-Chu-Yu, and it has weak antitumor activity. In recent years, a number of highly active antitumor candidates have been discovered with a significant progress. This article reviews the research progress of evodiamine-based antitumor drug design strategies, in order to provide reference for the development of new drugs with natural products as leads.
2.Inhibition of Ferroptosis by Mesenchymal Stem Cell-Derived Exosomes in Acute Spinal Cord Injury: Role of Nrf2/GCH1/BH4 Axis
Yixin CHEN ; Bingfa LI ; Jing QUAN ; Zhe LI ; Yan LI ; Yinbo TANG
Neurospine 2024;21(2):642-655
Objective:
The therapeutic benefits of exosomes obtained from mesenchymal stem cells (MSCs) in acute spinal cord injury (SCI) have been demonstrated in recent years, but the precise mechanisms remain unknown. In this study, the efficacy and mechanisms of MSC-derived exosomes (MSC-Exo) in acute SCI were investigated.
Methods:
By utilizing a BV2 ferroptosis cellular model and an SCI rat model, we investigated the effects of MSC-Exo on iron death related indicators and NF-E2 related factor 2 (Nrf2)/GTP cyclolase I (GCH1)/5,6,7,8-tetrahydrobiopterin (BH4) signaling axis, as well as their therapeutic effects on SCI rats.
Results:
The results revealed that MSC-Exo effectively inhibited the production of ferrous iron, lipid peroxidation products malonaldehyde and reactive oxygen species, and ferroptosis-promoting factor prostaglandin-endoperoxide synthase 2. Concurrently, they upregulated ferroptosis suppressors FTH-1 (ferritin heavy chain 1), SLC7A11 (solute carrier family 7 member 11), FSP1 (ferroptosis suppressor protein 1), and GPX4 (glutathione peroxidase 4), contributing to enhanced neurological recovery in SCI rats. Further analysis showed the Nrf2/GTP/BH4 signaling pathway’s critical role in suppressing ferroptosis. Additionally, MSC-Exo was found to inhibit lipopolysaccharide-induced ferroptosis in BV2 cells and SCI rats by activating the Nrf2/GCH1/BH4 axis.
Conclusion
In summary, the study demonstrates that MSC-Exo mitigates microglial cell ferroptosis via the Nrf2/GCH1/BH4 axis, showing potential for preserving and restoring neurological function post-SCI.
3.Inhibition of Ferroptosis by Mesenchymal Stem Cell-Derived Exosomes in Acute Spinal Cord Injury: Role of Nrf2/GCH1/BH4 Axis
Yixin CHEN ; Bingfa LI ; Jing QUAN ; Zhe LI ; Yan LI ; Yinbo TANG
Neurospine 2024;21(2):642-655
Objective:
The therapeutic benefits of exosomes obtained from mesenchymal stem cells (MSCs) in acute spinal cord injury (SCI) have been demonstrated in recent years, but the precise mechanisms remain unknown. In this study, the efficacy and mechanisms of MSC-derived exosomes (MSC-Exo) in acute SCI were investigated.
Methods:
By utilizing a BV2 ferroptosis cellular model and an SCI rat model, we investigated the effects of MSC-Exo on iron death related indicators and NF-E2 related factor 2 (Nrf2)/GTP cyclolase I (GCH1)/5,6,7,8-tetrahydrobiopterin (BH4) signaling axis, as well as their therapeutic effects on SCI rats.
Results:
The results revealed that MSC-Exo effectively inhibited the production of ferrous iron, lipid peroxidation products malonaldehyde and reactive oxygen species, and ferroptosis-promoting factor prostaglandin-endoperoxide synthase 2. Concurrently, they upregulated ferroptosis suppressors FTH-1 (ferritin heavy chain 1), SLC7A11 (solute carrier family 7 member 11), FSP1 (ferroptosis suppressor protein 1), and GPX4 (glutathione peroxidase 4), contributing to enhanced neurological recovery in SCI rats. Further analysis showed the Nrf2/GTP/BH4 signaling pathway’s critical role in suppressing ferroptosis. Additionally, MSC-Exo was found to inhibit lipopolysaccharide-induced ferroptosis in BV2 cells and SCI rats by activating the Nrf2/GCH1/BH4 axis.
Conclusion
In summary, the study demonstrates that MSC-Exo mitigates microglial cell ferroptosis via the Nrf2/GCH1/BH4 axis, showing potential for preserving and restoring neurological function post-SCI.
4.Inhibition of Ferroptosis by Mesenchymal Stem Cell-Derived Exosomes in Acute Spinal Cord Injury: Role of Nrf2/GCH1/BH4 Axis
Yixin CHEN ; Bingfa LI ; Jing QUAN ; Zhe LI ; Yan LI ; Yinbo TANG
Neurospine 2024;21(2):642-655
Objective:
The therapeutic benefits of exosomes obtained from mesenchymal stem cells (MSCs) in acute spinal cord injury (SCI) have been demonstrated in recent years, but the precise mechanisms remain unknown. In this study, the efficacy and mechanisms of MSC-derived exosomes (MSC-Exo) in acute SCI were investigated.
Methods:
By utilizing a BV2 ferroptosis cellular model and an SCI rat model, we investigated the effects of MSC-Exo on iron death related indicators and NF-E2 related factor 2 (Nrf2)/GTP cyclolase I (GCH1)/5,6,7,8-tetrahydrobiopterin (BH4) signaling axis, as well as their therapeutic effects on SCI rats.
Results:
The results revealed that MSC-Exo effectively inhibited the production of ferrous iron, lipid peroxidation products malonaldehyde and reactive oxygen species, and ferroptosis-promoting factor prostaglandin-endoperoxide synthase 2. Concurrently, they upregulated ferroptosis suppressors FTH-1 (ferritin heavy chain 1), SLC7A11 (solute carrier family 7 member 11), FSP1 (ferroptosis suppressor protein 1), and GPX4 (glutathione peroxidase 4), contributing to enhanced neurological recovery in SCI rats. Further analysis showed the Nrf2/GTP/BH4 signaling pathway’s critical role in suppressing ferroptosis. Additionally, MSC-Exo was found to inhibit lipopolysaccharide-induced ferroptosis in BV2 cells and SCI rats by activating the Nrf2/GCH1/BH4 axis.
Conclusion
In summary, the study demonstrates that MSC-Exo mitigates microglial cell ferroptosis via the Nrf2/GCH1/BH4 axis, showing potential for preserving and restoring neurological function post-SCI.
5.Inhibition of Ferroptosis by Mesenchymal Stem Cell-Derived Exosomes in Acute Spinal Cord Injury: Role of Nrf2/GCH1/BH4 Axis
Yixin CHEN ; Bingfa LI ; Jing QUAN ; Zhe LI ; Yan LI ; Yinbo TANG
Neurospine 2024;21(2):642-655
Objective:
The therapeutic benefits of exosomes obtained from mesenchymal stem cells (MSCs) in acute spinal cord injury (SCI) have been demonstrated in recent years, but the precise mechanisms remain unknown. In this study, the efficacy and mechanisms of MSC-derived exosomes (MSC-Exo) in acute SCI were investigated.
Methods:
By utilizing a BV2 ferroptosis cellular model and an SCI rat model, we investigated the effects of MSC-Exo on iron death related indicators and NF-E2 related factor 2 (Nrf2)/GTP cyclolase I (GCH1)/5,6,7,8-tetrahydrobiopterin (BH4) signaling axis, as well as their therapeutic effects on SCI rats.
Results:
The results revealed that MSC-Exo effectively inhibited the production of ferrous iron, lipid peroxidation products malonaldehyde and reactive oxygen species, and ferroptosis-promoting factor prostaglandin-endoperoxide synthase 2. Concurrently, they upregulated ferroptosis suppressors FTH-1 (ferritin heavy chain 1), SLC7A11 (solute carrier family 7 member 11), FSP1 (ferroptosis suppressor protein 1), and GPX4 (glutathione peroxidase 4), contributing to enhanced neurological recovery in SCI rats. Further analysis showed the Nrf2/GTP/BH4 signaling pathway’s critical role in suppressing ferroptosis. Additionally, MSC-Exo was found to inhibit lipopolysaccharide-induced ferroptosis in BV2 cells and SCI rats by activating the Nrf2/GCH1/BH4 axis.
Conclusion
In summary, the study demonstrates that MSC-Exo mitigates microglial cell ferroptosis via the Nrf2/GCH1/BH4 axis, showing potential for preserving and restoring neurological function post-SCI.
6.Inhibition of Ferroptosis by Mesenchymal Stem Cell-Derived Exosomes in Acute Spinal Cord Injury: Role of Nrf2/GCH1/BH4 Axis
Yixin CHEN ; Bingfa LI ; Jing QUAN ; Zhe LI ; Yan LI ; Yinbo TANG
Neurospine 2024;21(2):642-655
Objective:
The therapeutic benefits of exosomes obtained from mesenchymal stem cells (MSCs) in acute spinal cord injury (SCI) have been demonstrated in recent years, but the precise mechanisms remain unknown. In this study, the efficacy and mechanisms of MSC-derived exosomes (MSC-Exo) in acute SCI were investigated.
Methods:
By utilizing a BV2 ferroptosis cellular model and an SCI rat model, we investigated the effects of MSC-Exo on iron death related indicators and NF-E2 related factor 2 (Nrf2)/GTP cyclolase I (GCH1)/5,6,7,8-tetrahydrobiopterin (BH4) signaling axis, as well as their therapeutic effects on SCI rats.
Results:
The results revealed that MSC-Exo effectively inhibited the production of ferrous iron, lipid peroxidation products malonaldehyde and reactive oxygen species, and ferroptosis-promoting factor prostaglandin-endoperoxide synthase 2. Concurrently, they upregulated ferroptosis suppressors FTH-1 (ferritin heavy chain 1), SLC7A11 (solute carrier family 7 member 11), FSP1 (ferroptosis suppressor protein 1), and GPX4 (glutathione peroxidase 4), contributing to enhanced neurological recovery in SCI rats. Further analysis showed the Nrf2/GTP/BH4 signaling pathway’s critical role in suppressing ferroptosis. Additionally, MSC-Exo was found to inhibit lipopolysaccharide-induced ferroptosis in BV2 cells and SCI rats by activating the Nrf2/GCH1/BH4 axis.
Conclusion
In summary, the study demonstrates that MSC-Exo mitigates microglial cell ferroptosis via the Nrf2/GCH1/BH4 axis, showing potential for preserving and restoring neurological function post-SCI.
7.Discovery of highly potent phosphodiesterase-1 inhibitors by a combined-structure free energy perturbation approach.
Zhe LI ; Mei-Yan JIANG ; Runduo LIU ; Quan WANG ; Qian ZHOU ; Yi-You HUANG ; Yinuo WU ; Chang-Guo ZHAN ; Hai-Bin LUO
Acta Pharmaceutica Sinica B 2024;14(12):5357-5369
Accurate receptor/ligand binding free energy calculations can greatly accelerate drug discovery by identifying highly potent ligands. By simulating the change from one compound structure to another, the relative binding free energy (RBFE) change can be calculated based on the theoretically rigorous free energy perturbation (FEP) method. However, existing FEP-RBFE approaches may face convergence challenges due to difficulties in simulating non-physical intermediate states, which can lead to increased computational costs to obtain the converged results. To fundamentally overcome these issues and accelerate drug discovery, a new combined-structure RBFE (CS-FEP) calculation strategy was proposed, which solved the existing issues by constructing a new alchemical pathway, smoothed the alchemical transformation, increased the phase-space overlap between adjacent states, and thus significantly increased the convergence and accelerated the relative binding free energy calculations. This method was extensively tested in a practical drug discovery effort by targeting phosphodiesterase-1 (PDE1). Starting from a PDE1 inhibitor (compound 9, IC50 = 16.8 μmol/L), the CS-FEP guided hit-to-lead optimizations resulted in a promising lead (11b and its mesylate salt formulation 11b-Mesylate, IC50 = 7.0 nmol/L), with ∼2400-fold improved inhibitory activity. Further experimental studies revealed that the lead showed reasonable metabolic stability and significant anti-fibrotic effects in vivo.
8.Research progress of antibody technology in rapid detection of foodborne pathogens.
Meilin QUAN ; Fei LI ; Jinyan LIU ; Tingting WANG ; Rui NIAN ; Wenshuai LIU ; Ming ZHANG ; Zhe CHI
Chinese Journal of Biotechnology 2024;40(11):3985-4005
Foodborne pathogens are one of the major factors leading to food safety issues, causing harm to the national economy and people's livelihood. Achieving rapid detection of foodborne pathogens is currently a key strategy for preventing and controlling foodborne diseases. Antibodies naturally possess high specificity and sensitivity, serving as preferred tools for specific recognition of foodborne pathogens. We list the main methods for detecting foodborne pathogens, introduce the evolution and development of polyclonal antibodies, monoclonal antibodies, and genetically engineered antibodies, and review the application of different antibody technologies in the rapid detection of foodborne pathogens. Furthermore, we recognize that the combination of antibody technology and other foodborne pathogen detection methods is currently a reliable means to improve detection performance. Finally, we elaborate on the existing limitations of different antibodies and summarize the current research status and potential issues, aiming to provide a theoretical basis and practical ideas for the development of rapid detection of foodborne pathogens.
Foodborne Diseases/prevention & control*
;
Food Microbiology
;
Antibodies, Monoclonal/biosynthesis*
;
Antibodies/immunology*
;
Humans
;
Food Contamination/analysis*
9. The protective effect of hesperidin on cardiac and renal tissue damage in DOCA/Salt hypertensive rats
Bin YANG ; Hong-Han QUAN ; Hai-Ying GAO ; Qing ZHU ; Zhe CHEN
Chinese Pharmacological Bulletin 2023;39(9):1705-1710
Aim To investigate the protective effect of hesperidin (HES) on cardiorenal damage induced by DOCA/Salt hypertension and the underlying mechanisms. Methods Eighteen male SD rats were randomly divided into normal group (Ctrl), model group (DOCA/Salt), and DOCA/Salt with hesperidin group (DOCA/Salt + HES). HES was administered for four weeks. Blood pressure, serum creatinine and blood urea nitrogen were measured. The pathological changes in heart and kidney were examined by HE, Masson and Sirius red staining. The expression of α-SMA, collagen I and TGF-β were detected by Western blot. The mRNA levels of Nlrp3, TNF-α, IL-1β, IL-6 and NOXs were measured using qRT-PCR. Results Compared with the model group, HES administration significantly attenuated the occurrence of DOCA/Salt hypertension, improved renal function indicators of hypertensive rats, reduced renal and cardiac fibrosis, deduced the expression of α-SMA, collagen I and TGF-β, inhibited the expression of Nlrp3, TNF-α, IL-1β and IL-6, and decreased the expression of NOXs in renal and cardiac tissues. Conclusions HES can delay the occurrence of hypertension and protect against hypertension-induced renal and cardiac tissue damage, which may be related to the reduction of inflammatory reaction and oxidative stress by HES.
10. Liraglutide inhibits high glucose-induced cardiomyocyte hypertrophy via modulating autophagy and Na
Zhe ZHANG ; Xing WANG ; Lin-Quan YANG ; Hui-Juan MA ; Zhan-Ying YE
Chinese Pharmacological Bulletin 2023;39(1):43-50
Aim To investigate the mechanism through which liraglutide (LRG) inhibited high glucose (HG)-induced cardiomyocyte hypertrophy. Methods Cultured H9c2 were divided into control (CON) group, HG group, low-, middle- and high-dose LRG (LRG-L, LRG-M and LRG-H) groups, LRG-H + autophagy inhibitor trimethyladenine (3-MA) group. The relative cell surface change was assessed phalloidin staining. Membrane bound Na, K

Result Analysis
Print
Save
E-mail