1.Optimization of Rh blood group antigen precision transfusion strategy across multiple hospital campuses by PDCA circle
Qiming YING ; Luyan CHEN ; Kedi DONG ; Yiwen HE ; Yating ZHAN ; Yexiaoqing YANG ; Feng ZHAO ; Dingfeng LYU
Chinese Journal of Blood Transfusion 2025;38(1):106-111
[Objective] To explore the effectiveness of applying the PDCA (Plan-Do-Check-Act) cycle to enhance the compatibility rate of five Rh blood group antigen phenotypes between donors and recipients across multiple hospital campuses. [Methods] Clinical blood transfusion data from May to July 2022 were selected. Specific improvement measures were formulated based on the survey results, and the PDCA cycle management model was implemented from August 2022. The post-intervention phase spanned from August 2022 to October 2023. The Rh phenotype compatibility rate, the detection rate of Rh system antibodies, and the proportion of Rh system antibodies among unexpected antibodies were compared between the pre-intervention phase (May to July 2022) and the post-intervention phase. [Results] After the continuous improvement with the PDCA cycle, the compatibility rate for the five Rh blood group antigen phenotypes between donors and recipients from August to October 2023 reached 81.90%, significantly higher than the 70.54% recorded during the pre-intervention phase (May to July 2022, P<0.01), and displayed a quarterly upward trend (β=0.028, P<0.05). The detection rate of Rh blood group system antibodies (β=-9.839×10-5, P<0.05) and its proportion among all detected antibodies (β=-0.022, P<0.05) showed a quarterly decreasing trend, both demonstrating a negative correlation with the enhanced compatibility rate (r values of -0.981 and -0.911, respectively; P<0.05). [Conclusion] The implementation of targeted measures through the PDCA cycle can effectively increase the compatibility rate of five Rh blood group antigen phenotypes between donors and recipients, reduce the occurrence of unexpected Rh blood group antibodies, thereby lowering the risk of transfusion and enhancing the quality and safety of medical care.
2.Improvement effect and mechanism of Shengmai powder on heart failure mice with qi-yin deficiency
Lanfang KANG ; Jian LI ; Yating ZHAO ; Yingchun CHEN ; Guiyin CHEN ; Xiaobo NIE ; Jiao LIU ; Jie CHENG
China Pharmacy 2025;36(17):2127-2133
OBJECTIVE To study the improvement effect and mechanism of Shengmai powder on heart failure (HF) mice with qi-yin deficiency. METHODS The mice were randomly divided into blank group (water), model group (water), Shengmai powder low-, medium-, and high-dose groups [2.61, 5.22 and 10.44 g/kg (based on crude drug dosage)] and positive control group (metoprolol, 30 mg/kg), with 10 mice in each group. Except for the blank group, all other groups were subcutaneously injected with D-galactose, and a qi-yin deficiency HF mice model was established by continuous food restriction and weight-bearing swimming. At the same time of modeling, the corresponding medicine/water was gavaged once a day for five weeks. The general state of mice was recorded and the traditional Chinese medicine (TCM) syndrome score was evaluated. Behavioral experiments were conducted to investigate the total distance of open field action, the percentage of immobility time, and the swimming exhaustion time of mice. The contents of aspartate transaminase (AST), creatine kinase (CK) and lactate dehydrogenase (LDH) in the serum of mice were detected; cardiac function indexes [heart rate, left ventricular ejection fraction (LVEF), left ventricular end systolic diameter (LVESD), left ventricular end diastolic diameter (LVEDD), left ventricular mass index and whole heart mass index] were all detected; the histopathological morphology of mice myocardium was observed; the level of cardiomyocyte apoptosis in mice was detected; mRNA expression levels of B-cell lymphoma 2 (Bcl-2), Bcl-2 associated X protein (Bax), and Cleaved-caspase-3 in myocardial tissue of mice were detected; the phosphorylation levels of sarcoplasmic reticulum calcium regulatory related proteins [ryanodine receptor 2 (RyR2) and phospholamban (PLB)] in myocardial tissue of mice were detected. RESULTS Compared with the blank group, the body weight, total distance of open field action, swimming exhaustion time, LVEF, LVEDD, Bcl-2 mRNA expression level in myocardial tissue and PLB protein phosphorylation level in the model group were significantly reduced/shortened (P<0.05); TCM syndrome score, the percentage of immobility time, heart rate, LVESD, left ventricular mass index, whole heart mass index, cardiomyocyte apoptosis rate, the contents of CK, LDH and AST in serum, mRNA expression levels of Cleaved-caspase-3 and Bax and the phosphorylation level of RyR2 protein in myocardial tissue were significantly increased (P<0.05); there were inflammatory cell infiltration, disordered cell arrangement and obvious myocardial interstitial fibrosis in myocardial tissue. After the intervention of Shengmai powder, most of the above quantitative indexes in mice were significantly reversed (P<0.05), the inflammatory cell infiltration in myocardial tissue was reduced, and the degree of fibrosis was significantly reduced. CONCLUSIONS Shengmai powder can improve cardiac function, reduce the level of cardiomyocyte apoptosis and myocardial fibrosis in HF mice with qi-yin deficiency. Its mechanism may be related to the regulation of the expression of sarcoplasmic reticulum calcium regulation related proteins.
3.An lightweight algorithm for multi-dimensional optimization of intelligent detection of dental abnormalities on panoramic oral X-ray images.
Taotao ZHAO ; Ming NI ; Shunxing XIA ; Yuehao JIAO ; Yating HE
Journal of Southern Medical University 2025;45(8):1791-1799
OBJECTIVES:
We propose a YOLOv11-TDSP model for improving the accuracy of dental abnormality detection on panoramic oral X-ray images.
METHODS:
The SHSA single-head attention mechanism was integrated with C2PSA in the backbone layer to construct a new C2PSA_SHSA attention mechanism. The computational redundancy was reduced by applying single-head attention to some input channels to enhance the efficiency and detection accuracy of the model. A small object detection layer was then introduced into the head layer to correct the easily missed and false detections of small objects. Two rounds of structured pruning were implemented to reduce the number of model parameters, avoid overfitting, and improve the average precision. Before training, data augmentation techniques such as brightness enhancement and gamma contrast adjustment were employed to enhance the generalization ability of the model.
RESULTS:
The experiment results showed that the optimized YOLOv11-TDSP model achieved an accuracy of 94.5%, a recall rate of 92.3%, and an average precision of 95.8% for detecting dental abnormalities. Compared with the baseline model YOLOv11n, these metrics were improved by 6.9%, 7.4%, and 5.6%, respectively. The number of parameters and computational cost of the YOLOv11-TDSP model were only 12% and 13% of those of the high-precision YOLOv11x model, respectively.
CONCLUSIONS
The lightweight YOLOv11-TDSP model is capable of highly accurate identification of various dental diseases on panoramic oral X-ray images.
Radiography, Panoramic/methods*
;
Humans
;
Algorithms
;
Tooth Abnormalities/diagnostic imaging*
4.Partial knockout of NtPDK1a/1b/1c/1d enhances the disease resistance of Nicotiana tabacum.
Qianwei REN ; Hujiao LAN ; Tianyao LIU ; Huanting ZHAO ; Yating ZHAO ; Rui ZHANG ; Jianzhong LIU
Chinese Journal of Biotechnology 2025;41(2):670-679
The protein kinase A/protein kinase G/protein kinase C-family (AGC kinase family) of eukaryotes is involved in regulating numerous biological processes. The 3-phosphoinositide- dependent protein kinase 1 (PDK1), is a conserved serine/threonine kinase in eukaryotes. To understand the roles of PDK1 homologous genes in cell death and immunity in tetraploid Nicotiana tabacum, the previuosly generated transgenic CRISPR/Cas9 lines, in which 5-7 alleles of the 4 homologous PDK1 genes (NtPDK1a/1b/1c/1d homologs) simultaneously knocked out, were used in this study. Our results showed that the hypersensitive response (HR) triggered by transient overexpression of active Pto (PtoY207D) or soybean GmMEKK1 was significantly delayed, whereas the resistance to Pseudomonas syrangae pv. tomato DC3000 (Pst DC3000) and tobacco mosaic virus (TMV) was significantly elevated in these partial knockout lines. The elevated resistance to Pst DC3000 and TMV was correlated with the elevated activation of NtMPK6, NtMPK3, and NtMPK4. Taken together, our results indicated that NtPDK1s play a positive role in cell death but a positive role in disease resistance, likely through negative regulation of the MAPK signaling cascade.
Nicotiana/virology*
;
Disease Resistance/genetics*
;
Plant Diseases/immunology*
;
Plants, Genetically Modified/genetics*
;
Gene Knockout Techniques
;
Plant Proteins/genetics*
;
CRISPR-Cas Systems
;
Protein Serine-Threonine Kinases/genetics*
;
3-Phosphoinositide-Dependent Protein Kinases/genetics*
;
Pyruvate Dehydrogenase Acetyl-Transferring Kinase
;
Tobacco Mosaic Virus/pathogenicity*
5.Improvement effects of 3,5,6,7,8,3′,4′-heptamethoxyflavone of Fructus Aurantii on rats with damp blockage of the middle energizer
Wenhui GONG ; Yating XIE ; Li XIN ; Shihao YAN ; Beibei ZHAO ; Yuqing ZHENG ; Jingying GUO ; Jie SHANG ; Peng ZHENG ; Jinlian ZHANG
China Pharmacy 2024;35(7):819-824
OBJECTIVE To investigate the improvement effects of 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF) of Fructus Aurantii on rats with damp blockage of the middle energizer. METHODS The rats were randomly divided into normal group, model group, positive control group (Raceanisodamine tablet, 1 mg/kg), HMF low-dose, medium-dose and high-dose groups (0.3, 0.6, 0.9 mg/kg), with 7 rats in each group. Except for the normal group, the other groups were modeled by internal and external composite factors. After successful modeling, the rats in each group were given the corresponding drug or normal saline, once a day, for 14 days. The general behavioral states such as dietary intake, water intake and mental state of the rats were observed, and the fecal water content rate and saliva flow rate were measured. Hematoxylin-eosin (HE) staining was used to observe the pathological and morphology in gastric and small intestinal tissues of rats. The plasma content of aldosterone was detected, and the expression of aquaporins (AQP3) in the gastric tissue of rats was determined. RESULTS Compared with the normal group, the dietary intake and water intake of the model group rats were significantly decreased (P<0.01), the fecal water content rate, salivary flow rate, plasma content of aldosterone and the expression of AQP3 in gastric tissue were increased significantly (P<0.01). Gastric tissue injury invaded the mucosal muscle layer, resulting in mucosal muscle layer rupture; pathological and morphological changes such as small intestinal villous erosion and glandular structure destruction were observed in the small intestine. Compared with the model group, the dietary intake and water intake of rats were increased in HMF groups; fecal water content rate, salivary flow rate, plasma content of aldosterone, the expression of AQP3 in gastric tissue were decreased, most of the above differences were statistically significant (P<0.05 or P<0.01). The pathological and morphological changes in the gastric and small intestine tissues of rats had been improved to varying degrees. CONCLUSIONS HMF of Fructus Aurantii with dry property HMF could improve the symptoms of rats with damp blockage of middle energizer, the mechanism of which may be associated with reducing the content of plasma aldosterone and down-regulating the expression of gastric AQP3.
6.Application of the integrated medical and industrial training model in the training of oncology talents from the perspective of new medical sciences
Guogui SUN ; Yanlei GE ; Huaiyong NIE ; Yaning ZHAO ; Haimei BO ; Fengmei XING ; Yating ZHAO ; Hongcan YAN
Clinical Medicine of China 2024;40(1):77-80
The medical-industrial fusion training model combines the knowledge and technology of medical and engineering disciplines in the training of oncology graduate students, which can help accurate diagnosis and treatment of tumors, promote cooperation and innovation in oncology research, as well as promote the cultivation and exchanges of composite and innovative medical talents in oncology, promote the innovation and development of oncology diagnostic and treatment technology, and improve the survival rate and quality of life of oncology patients. This paper discusses the application of medical-industrial fusion training model in the training of o ncology professionals, and explores the new teaching mode of medical-industrial fusion thinking in the cultivation of complex and innovative medical talents in oncology under the background of "new medical science".
7.Exploration of the training model for the integration of medical and engineering abilities among medical students majoring in oncology from the perspective of new medical disciplines
Guogui SUN ; Weibin CHEN ; Yanlei GE ; Hongcan YAN ; Huaiyong NIE ; Yaning ZHAO ; Yating ZHAO ; Xiaohong HUANG
Clinical Medicine of China 2024;40(2):157-160
With the deepening of China's medical reform, people's demand for health is growing, which promotes the construction of "new medicine" and puts forward higher requirements for the cultivation and education of medical students. Undergraduate medical education is a crucial period for the growth of medical students, and how to do a good job in undergraduate teaching under the background of "new medicine" is currently a research hotspot. The clinical teaching stage is an important period for medical students to fully understand clinical disciplines and cultivate their understanding of specialties. Therefore, we should explore new teaching methods and means to adapt to the needs of the new era. In the context of "new medicine", the medical-engineering fusion diagnosis and treatment technology has become an important trend in the clinical diagnosis and treatment of oncology. In order to adapt to this change, clinical teaching and teaching management in oncology also need new exploration and research. Taking the clinical teaching of oncology as an example, this article discusses how to cultivate medical students' thinking of medical-engineering fusion.
8.Methodological investigation on bacterial endotoxin in betahistine hydrochloride injection
HAO Gang ; ZHANG Lifang ; WU Xing ; YAN Hao ; ZHAO Yating ; HAN Feng
Drug Standards of China 2024;25(1):082-089
Objective: Investigation on the quality control method of bacterial endotoxin in betahistine hydrochloride injection.
Methods: The method of bacterial endotoxin gel test of 23 batches of betahistine hydrochloride injection from 5 manufacturers was studied.
Results: The limit value of endotoxin in this product was 3 EU·mg-1, which was suitable for the bacterial endotoxin test of China Pharmacopoeia 2020.
Conclusion: The quality of betahistine hydrochloride injection can be controlled by bacterial endotoxin test, and the limit of bacterial endotoxin can be set as follows: the content of endotoxin in every 1mg of betahistine hydrochloride should not exceed 3 EU.
9.Research progress of allergen immunotherapy mechanism and efficacy of allergic conjunctivitis
Xuequan SUN ; Jijiao LIN ; Yating ZHAO ; Yaqin JIANG ; Fei XIA
International Eye Science 2024;24(10):1595-1599
Allergic conjunctivitis is the most common type of allergic eye disease, and the incidence in children and adolescents is increasing year by year. Drug therapy can only relieve some symptoms and only in a short period, while allergen immunotherapy is currently a therapy that can significantly improve the symptoms of chronic allergy and the course of the disease. This method has been used abroad for many years but has yet to be reported in China. The author reviews the effective mechanism and clinical efficiency of allergen immunotherapy and provides a reference for the further clinical application in China.
10.Pyroptosis:A new bridge connecting gut microbiota and liver diseases
Yijie ZHAO ; Lu XIE ; Yating ZHANG ; Guangwei LIU
Journal of Clinical Hepatology 2024;40(9):1908-1915
Since the proposal of the concept of the gut-liver axis,a large number of studies have focused on exploring the connection between gut microbiota and liver disease;however,the idea of using pyroptosis as a hub to explore the intrinsic mechanism of gut-liver crosstalk is still in its infancy.This article mainly describes the process by which gut microbiota dysbiosis affects the integrity of mucosal barrier and bile acid metabolism,induces pyroptosis,and thereby affects the development and progression of liver diseases,and it also concludes that gut microbiota dysbiosis affects liver diseases by inducing NLRP3/AIM2/Caspase-1-dependent,Caspase-4/11/GSDMD-dependent,and Caspase-3/GSDME-dependent pyroptosis.In summary,this study aims to provide new ideas and targets for the future diagnosis and treatment of liver diseases by establishing the connection between pyroptosis and intestinal-liver immune crosstalk.

Result Analysis
Print
Save
E-mail