1.Applications and prospects of machine learning in perioperative transfusion medicine
Rui FAN ; Xiaoying ZHANG ; Weiwei SHANG ; Wenfei TANG ; Haimei MA
Chinese Journal of Blood Transfusion 2025;38(10):1450-1456
This paper systematically reviews the application progress of machine learning in perioperative transfusion medicine, focusing on its significant achievements in identifying transfusion risk factors, accurately predicting transfusion requirements, and enabling dynamic monitoring with real-time feedback. It also examines the methodologies, performance metrics, and clinical significance of constructing machine learning models across various surgical specialties, including orthopaedics, cardiac surgery, trauma, and obstetrics. The review further analyzes major challenges currently facing the field, including data bias, model overfitting and interpretability issues, alongside privacy and ethical concerns. Finally, it outlines future directions, highlighting how multimodal data fusion, deep learning applications, multicentre validation, and interdisciplinary collaboration are poised to significant potential for advancing the clinical translation of intelligent transfusion models, achieve personalized precision transfusion management, and enhance patient safety and therapeutic outcomes.
2.The effect and mechanism of Panax notoginseng saponins through inhibiting JNK/c-Jun signaling pathway in calcific aortic valve disease
Hongzheng LI ; Tianjiao LIU ; Zucheng SHANG ; Mengfan LI ; Guosheng LIN ; Bin ZHANG ; Zikai YU ; Changgeng FU ; Yongjian WU ; Keji CHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1550-1561
Objective To investigate the effect and mechanism of Panax notoginseng saponins(PNS)in inhibiting c-Jun N-terminal protein kinase(JNK)/c-Jun signaling pathway activation to alleviate calcific aortic valve disease(CAVD)in mice.Methods Twenty-one male ApoE-/-mice aged 6 to 8 weeks were randomly divided into the model,PNS high-dose(60 mg/kg),and PNS low-dose(30 mg/kg)groups using the random number table method,with seven mice per group.Nine male C57BL/6 mice aged 6 to 8 weeks were used as the control group.Mice in the control group were fed a normal diet,whereas ApoE-/-mice were fed a high-fat diet for 12 weeks.After 12 weeks,three C57BL/6 and three ApoE-/-mice(one ApoE-/-mice from each group)were randomly selected to evaluate the CAVD modeling effect.After confirming successful modeling,the PNS high-and low-dose groups received daily intragastric PNS administration.The control and model groups were administered an equal volume of stroke-physiological saline solution by gavage for 4 consecutive weeks.The valve annulus diameter and peak velocity of the mice in each group were then detected using ultrasound.The degree of aortic valve calcification was evaluated using von Kossa and Alizarin Red S staining.The serum triglycerides(TG),total cholesterol(TC),low-density lipoprotein cholesterol(LDL-C),and high-density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Inflammatory factor interleukin-4(IL-4),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)levels were determined using an enzyme-linked immunosorbent assay.The expressions of calcification markers,runt-related transcription factor 2(RUNX2),and bone morphogenetic protein 2(BMP2)were detected using immunohistochemistry.Aortic valve cell apoptosis was evaluated using TUNEL staining,and JNK/c-Jun signaling pathway-related mRNA and mean fluorescence intensity were detected using quantitative real-time PCR and immunofluorescence,respectively.Results Compared with the control group,the mice in the model group showed an increase in serum TC,TG,LDL-C,TNF-α,and IL-1β levels,a decrease in IL-4 and IL-10 levels,a decrease in annulus diameter,an increase in peak flow velocity,and an increase in von Kossa and Alizarin Red S staining-positive areas.Additionally,the model group showed an increase in aortic valve cell apoptosis rate,an increase in BMP2 and RUNX2-positive rates,and an increase in JNK and c-Jun mRNA expression levels and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Compared to the model group,the PNS low-dose group showed a decrease in serum TC,LDL-C,and TNF-α levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in positive area in Alizarin Red S staining.Furthermore,the PNS low-dose group showed a decrease in BMP2 and RUNX2-positive rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).The PNS high-dose group showed an increase in HDL-C,IL-4 and IL-10 levels,a decrease in serum TC,LDL-C,TNF-α,and IL-1β levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in von Kossa and Alizarin Red S staining-positive areas and cell apoptosis rate.The PNS high-dose group also showed a decrease in BMP2 and RUNX2 positive staining rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Conclusion PNS may reduce valvular cell apoptosis,alleviate inflammation,and protect against aortic valve calcification in mice by inhibiting the activation of JNK/c-Jun signaling pathway.
3.The effect and mechanism of Panax notoginseng saponins through inhibiting JNK/c-Jun signaling pathway in calcific aortic valve disease
Hongzheng LI ; Tianjiao LIU ; Zucheng SHANG ; Mengfan LI ; Guosheng LIN ; Bin ZHANG ; Zikai YU ; Changgeng FU ; Yongjian WU ; Keji CHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1550-1561
Objective To investigate the effect and mechanism of Panax notoginseng saponins(PNS)in inhibiting c-Jun N-terminal protein kinase(JNK)/c-Jun signaling pathway activation to alleviate calcific aortic valve disease(CAVD)in mice.Methods Twenty-one male ApoE-/-mice aged 6 to 8 weeks were randomly divided into the model,PNS high-dose(60 mg/kg),and PNS low-dose(30 mg/kg)groups using the random number table method,with seven mice per group.Nine male C57BL/6 mice aged 6 to 8 weeks were used as the control group.Mice in the control group were fed a normal diet,whereas ApoE-/-mice were fed a high-fat diet for 12 weeks.After 12 weeks,three C57BL/6 and three ApoE-/-mice(one ApoE-/-mice from each group)were randomly selected to evaluate the CAVD modeling effect.After confirming successful modeling,the PNS high-and low-dose groups received daily intragastric PNS administration.The control and model groups were administered an equal volume of stroke-physiological saline solution by gavage for 4 consecutive weeks.The valve annulus diameter and peak velocity of the mice in each group were then detected using ultrasound.The degree of aortic valve calcification was evaluated using von Kossa and Alizarin Red S staining.The serum triglycerides(TG),total cholesterol(TC),low-density lipoprotein cholesterol(LDL-C),and high-density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Inflammatory factor interleukin-4(IL-4),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)levels were determined using an enzyme-linked immunosorbent assay.The expressions of calcification markers,runt-related transcription factor 2(RUNX2),and bone morphogenetic protein 2(BMP2)were detected using immunohistochemistry.Aortic valve cell apoptosis was evaluated using TUNEL staining,and JNK/c-Jun signaling pathway-related mRNA and mean fluorescence intensity were detected using quantitative real-time PCR and immunofluorescence,respectively.Results Compared with the control group,the mice in the model group showed an increase in serum TC,TG,LDL-C,TNF-α,and IL-1β levels,a decrease in IL-4 and IL-10 levels,a decrease in annulus diameter,an increase in peak flow velocity,and an increase in von Kossa and Alizarin Red S staining-positive areas.Additionally,the model group showed an increase in aortic valve cell apoptosis rate,an increase in BMP2 and RUNX2-positive rates,and an increase in JNK and c-Jun mRNA expression levels and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Compared to the model group,the PNS low-dose group showed a decrease in serum TC,LDL-C,and TNF-α levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in positive area in Alizarin Red S staining.Furthermore,the PNS low-dose group showed a decrease in BMP2 and RUNX2-positive rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).The PNS high-dose group showed an increase in HDL-C,IL-4 and IL-10 levels,a decrease in serum TC,LDL-C,TNF-α,and IL-1β levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in von Kossa and Alizarin Red S staining-positive areas and cell apoptosis rate.The PNS high-dose group also showed a decrease in BMP2 and RUNX2 positive staining rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Conclusion PNS may reduce valvular cell apoptosis,alleviate inflammation,and protect against aortic valve calcification in mice by inhibiting the activation of JNK/c-Jun signaling pathway.
4.The effect and mechanism of Panax notoginseng saponins through inhibiting JNK/c-Jun signaling pathway in calcific aortic valve disease
Hongzheng LI ; Tianjiao LIU ; Zucheng SHANG ; Mengfan LI ; Guosheng LIN ; Bin ZHANG ; Zikai YU ; Changgeng FU ; Yongjian WU ; Keji CHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1550-1561
Objective To investigate the effect and mechanism of Panax notoginseng saponins(PNS)in inhibiting c-Jun N-terminal protein kinase(JNK)/c-Jun signaling pathway activation to alleviate calcific aortic valve disease(CAVD)in mice.Methods Twenty-one male ApoE-/-mice aged 6 to 8 weeks were randomly divided into the model,PNS high-dose(60 mg/kg),and PNS low-dose(30 mg/kg)groups using the random number table method,with seven mice per group.Nine male C57BL/6 mice aged 6 to 8 weeks were used as the control group.Mice in the control group were fed a normal diet,whereas ApoE-/-mice were fed a high-fat diet for 12 weeks.After 12 weeks,three C57BL/6 and three ApoE-/-mice(one ApoE-/-mice from each group)were randomly selected to evaluate the CAVD modeling effect.After confirming successful modeling,the PNS high-and low-dose groups received daily intragastric PNS administration.The control and model groups were administered an equal volume of stroke-physiological saline solution by gavage for 4 consecutive weeks.The valve annulus diameter and peak velocity of the mice in each group were then detected using ultrasound.The degree of aortic valve calcification was evaluated using von Kossa and Alizarin Red S staining.The serum triglycerides(TG),total cholesterol(TC),low-density lipoprotein cholesterol(LDL-C),and high-density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Inflammatory factor interleukin-4(IL-4),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)levels were determined using an enzyme-linked immunosorbent assay.The expressions of calcification markers,runt-related transcription factor 2(RUNX2),and bone morphogenetic protein 2(BMP2)were detected using immunohistochemistry.Aortic valve cell apoptosis was evaluated using TUNEL staining,and JNK/c-Jun signaling pathway-related mRNA and mean fluorescence intensity were detected using quantitative real-time PCR and immunofluorescence,respectively.Results Compared with the control group,the mice in the model group showed an increase in serum TC,TG,LDL-C,TNF-α,and IL-1β levels,a decrease in IL-4 and IL-10 levels,a decrease in annulus diameter,an increase in peak flow velocity,and an increase in von Kossa and Alizarin Red S staining-positive areas.Additionally,the model group showed an increase in aortic valve cell apoptosis rate,an increase in BMP2 and RUNX2-positive rates,and an increase in JNK and c-Jun mRNA expression levels and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Compared to the model group,the PNS low-dose group showed a decrease in serum TC,LDL-C,and TNF-α levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in positive area in Alizarin Red S staining.Furthermore,the PNS low-dose group showed a decrease in BMP2 and RUNX2-positive rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).The PNS high-dose group showed an increase in HDL-C,IL-4 and IL-10 levels,a decrease in serum TC,LDL-C,TNF-α,and IL-1β levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in von Kossa and Alizarin Red S staining-positive areas and cell apoptosis rate.The PNS high-dose group also showed a decrease in BMP2 and RUNX2 positive staining rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Conclusion PNS may reduce valvular cell apoptosis,alleviate inflammation,and protect against aortic valve calcification in mice by inhibiting the activation of JNK/c-Jun signaling pathway.
5.The effect and mechanism of Panax notoginseng saponins through inhibiting JNK/c-Jun signaling pathway in calcific aortic valve disease
Hongzheng LI ; Tianjiao LIU ; Zucheng SHANG ; Mengfan LI ; Guosheng LIN ; Bin ZHANG ; Zikai YU ; Changgeng FU ; Yongjian WU ; Keji CHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1550-1561
Objective To investigate the effect and mechanism of Panax notoginseng saponins(PNS)in inhibiting c-Jun N-terminal protein kinase(JNK)/c-Jun signaling pathway activation to alleviate calcific aortic valve disease(CAVD)in mice.Methods Twenty-one male ApoE-/-mice aged 6 to 8 weeks were randomly divided into the model,PNS high-dose(60 mg/kg),and PNS low-dose(30 mg/kg)groups using the random number table method,with seven mice per group.Nine male C57BL/6 mice aged 6 to 8 weeks were used as the control group.Mice in the control group were fed a normal diet,whereas ApoE-/-mice were fed a high-fat diet for 12 weeks.After 12 weeks,three C57BL/6 and three ApoE-/-mice(one ApoE-/-mice from each group)were randomly selected to evaluate the CAVD modeling effect.After confirming successful modeling,the PNS high-and low-dose groups received daily intragastric PNS administration.The control and model groups were administered an equal volume of stroke-physiological saline solution by gavage for 4 consecutive weeks.The valve annulus diameter and peak velocity of the mice in each group were then detected using ultrasound.The degree of aortic valve calcification was evaluated using von Kossa and Alizarin Red S staining.The serum triglycerides(TG),total cholesterol(TC),low-density lipoprotein cholesterol(LDL-C),and high-density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Inflammatory factor interleukin-4(IL-4),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)levels were determined using an enzyme-linked immunosorbent assay.The expressions of calcification markers,runt-related transcription factor 2(RUNX2),and bone morphogenetic protein 2(BMP2)were detected using immunohistochemistry.Aortic valve cell apoptosis was evaluated using TUNEL staining,and JNK/c-Jun signaling pathway-related mRNA and mean fluorescence intensity were detected using quantitative real-time PCR and immunofluorescence,respectively.Results Compared with the control group,the mice in the model group showed an increase in serum TC,TG,LDL-C,TNF-α,and IL-1β levels,a decrease in IL-4 and IL-10 levels,a decrease in annulus diameter,an increase in peak flow velocity,and an increase in von Kossa and Alizarin Red S staining-positive areas.Additionally,the model group showed an increase in aortic valve cell apoptosis rate,an increase in BMP2 and RUNX2-positive rates,and an increase in JNK and c-Jun mRNA expression levels and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Compared to the model group,the PNS low-dose group showed a decrease in serum TC,LDL-C,and TNF-α levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in positive area in Alizarin Red S staining.Furthermore,the PNS low-dose group showed a decrease in BMP2 and RUNX2-positive rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).The PNS high-dose group showed an increase in HDL-C,IL-4 and IL-10 levels,a decrease in serum TC,LDL-C,TNF-α,and IL-1β levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in von Kossa and Alizarin Red S staining-positive areas and cell apoptosis rate.The PNS high-dose group also showed a decrease in BMP2 and RUNX2 positive staining rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Conclusion PNS may reduce valvular cell apoptosis,alleviate inflammation,and protect against aortic valve calcification in mice by inhibiting the activation of JNK/c-Jun signaling pathway.
6.The effect and mechanism of Panax notoginseng saponins through inhibiting JNK/c-Jun signaling pathway in calcific aortic valve disease
Hongzheng LI ; Tianjiao LIU ; Zucheng SHANG ; Mengfan LI ; Guosheng LIN ; Bin ZHANG ; Zikai YU ; Changgeng FU ; Yongjian WU ; Keji CHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1550-1561
Objective To investigate the effect and mechanism of Panax notoginseng saponins(PNS)in inhibiting c-Jun N-terminal protein kinase(JNK)/c-Jun signaling pathway activation to alleviate calcific aortic valve disease(CAVD)in mice.Methods Twenty-one male ApoE-/-mice aged 6 to 8 weeks were randomly divided into the model,PNS high-dose(60 mg/kg),and PNS low-dose(30 mg/kg)groups using the random number table method,with seven mice per group.Nine male C57BL/6 mice aged 6 to 8 weeks were used as the control group.Mice in the control group were fed a normal diet,whereas ApoE-/-mice were fed a high-fat diet for 12 weeks.After 12 weeks,three C57BL/6 and three ApoE-/-mice(one ApoE-/-mice from each group)were randomly selected to evaluate the CAVD modeling effect.After confirming successful modeling,the PNS high-and low-dose groups received daily intragastric PNS administration.The control and model groups were administered an equal volume of stroke-physiological saline solution by gavage for 4 consecutive weeks.The valve annulus diameter and peak velocity of the mice in each group were then detected using ultrasound.The degree of aortic valve calcification was evaluated using von Kossa and Alizarin Red S staining.The serum triglycerides(TG),total cholesterol(TC),low-density lipoprotein cholesterol(LDL-C),and high-density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Inflammatory factor interleukin-4(IL-4),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)levels were determined using an enzyme-linked immunosorbent assay.The expressions of calcification markers,runt-related transcription factor 2(RUNX2),and bone morphogenetic protein 2(BMP2)were detected using immunohistochemistry.Aortic valve cell apoptosis was evaluated using TUNEL staining,and JNK/c-Jun signaling pathway-related mRNA and mean fluorescence intensity were detected using quantitative real-time PCR and immunofluorescence,respectively.Results Compared with the control group,the mice in the model group showed an increase in serum TC,TG,LDL-C,TNF-α,and IL-1β levels,a decrease in IL-4 and IL-10 levels,a decrease in annulus diameter,an increase in peak flow velocity,and an increase in von Kossa and Alizarin Red S staining-positive areas.Additionally,the model group showed an increase in aortic valve cell apoptosis rate,an increase in BMP2 and RUNX2-positive rates,and an increase in JNK and c-Jun mRNA expression levels and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Compared to the model group,the PNS low-dose group showed a decrease in serum TC,LDL-C,and TNF-α levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in positive area in Alizarin Red S staining.Furthermore,the PNS low-dose group showed a decrease in BMP2 and RUNX2-positive rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).The PNS high-dose group showed an increase in HDL-C,IL-4 and IL-10 levels,a decrease in serum TC,LDL-C,TNF-α,and IL-1β levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in von Kossa and Alizarin Red S staining-positive areas and cell apoptosis rate.The PNS high-dose group also showed a decrease in BMP2 and RUNX2 positive staining rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Conclusion PNS may reduce valvular cell apoptosis,alleviate inflammation,and protect against aortic valve calcification in mice by inhibiting the activation of JNK/c-Jun signaling pathway.
7.The effect and mechanism of Panax notoginseng saponins through inhibiting JNK/c-Jun signaling pathway in calcific aortic valve disease
Hongzheng LI ; Tianjiao LIU ; Zucheng SHANG ; Mengfan LI ; Guosheng LIN ; Bin ZHANG ; Zikai YU ; Changgeng FU ; Yongjian WU ; Keji CHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1550-1561
Objective To investigate the effect and mechanism of Panax notoginseng saponins(PNS)in inhibiting c-Jun N-terminal protein kinase(JNK)/c-Jun signaling pathway activation to alleviate calcific aortic valve disease(CAVD)in mice.Methods Twenty-one male ApoE-/-mice aged 6 to 8 weeks were randomly divided into the model,PNS high-dose(60 mg/kg),and PNS low-dose(30 mg/kg)groups using the random number table method,with seven mice per group.Nine male C57BL/6 mice aged 6 to 8 weeks were used as the control group.Mice in the control group were fed a normal diet,whereas ApoE-/-mice were fed a high-fat diet for 12 weeks.After 12 weeks,three C57BL/6 and three ApoE-/-mice(one ApoE-/-mice from each group)were randomly selected to evaluate the CAVD modeling effect.After confirming successful modeling,the PNS high-and low-dose groups received daily intragastric PNS administration.The control and model groups were administered an equal volume of stroke-physiological saline solution by gavage for 4 consecutive weeks.The valve annulus diameter and peak velocity of the mice in each group were then detected using ultrasound.The degree of aortic valve calcification was evaluated using von Kossa and Alizarin Red S staining.The serum triglycerides(TG),total cholesterol(TC),low-density lipoprotein cholesterol(LDL-C),and high-density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Inflammatory factor interleukin-4(IL-4),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)levels were determined using an enzyme-linked immunosorbent assay.The expressions of calcification markers,runt-related transcription factor 2(RUNX2),and bone morphogenetic protein 2(BMP2)were detected using immunohistochemistry.Aortic valve cell apoptosis was evaluated using TUNEL staining,and JNK/c-Jun signaling pathway-related mRNA and mean fluorescence intensity were detected using quantitative real-time PCR and immunofluorescence,respectively.Results Compared with the control group,the mice in the model group showed an increase in serum TC,TG,LDL-C,TNF-α,and IL-1β levels,a decrease in IL-4 and IL-10 levels,a decrease in annulus diameter,an increase in peak flow velocity,and an increase in von Kossa and Alizarin Red S staining-positive areas.Additionally,the model group showed an increase in aortic valve cell apoptosis rate,an increase in BMP2 and RUNX2-positive rates,and an increase in JNK and c-Jun mRNA expression levels and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Compared to the model group,the PNS low-dose group showed a decrease in serum TC,LDL-C,and TNF-α levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in positive area in Alizarin Red S staining.Furthermore,the PNS low-dose group showed a decrease in BMP2 and RUNX2-positive rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).The PNS high-dose group showed an increase in HDL-C,IL-4 and IL-10 levels,a decrease in serum TC,LDL-C,TNF-α,and IL-1β levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in von Kossa and Alizarin Red S staining-positive areas and cell apoptosis rate.The PNS high-dose group also showed a decrease in BMP2 and RUNX2 positive staining rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Conclusion PNS may reduce valvular cell apoptosis,alleviate inflammation,and protect against aortic valve calcification in mice by inhibiting the activation of JNK/c-Jun signaling pathway.
8.The effect and mechanism of Panax notoginseng saponins through inhibiting JNK/c-Jun signaling pathway in calcific aortic valve disease
Hongzheng LI ; Tianjiao LIU ; Zucheng SHANG ; Mengfan LI ; Guosheng LIN ; Bin ZHANG ; Zikai YU ; Changgeng FU ; Yongjian WU ; Keji CHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1550-1561
Objective To investigate the effect and mechanism of Panax notoginseng saponins(PNS)in inhibiting c-Jun N-terminal protein kinase(JNK)/c-Jun signaling pathway activation to alleviate calcific aortic valve disease(CAVD)in mice.Methods Twenty-one male ApoE-/-mice aged 6 to 8 weeks were randomly divided into the model,PNS high-dose(60 mg/kg),and PNS low-dose(30 mg/kg)groups using the random number table method,with seven mice per group.Nine male C57BL/6 mice aged 6 to 8 weeks were used as the control group.Mice in the control group were fed a normal diet,whereas ApoE-/-mice were fed a high-fat diet for 12 weeks.After 12 weeks,three C57BL/6 and three ApoE-/-mice(one ApoE-/-mice from each group)were randomly selected to evaluate the CAVD modeling effect.After confirming successful modeling,the PNS high-and low-dose groups received daily intragastric PNS administration.The control and model groups were administered an equal volume of stroke-physiological saline solution by gavage for 4 consecutive weeks.The valve annulus diameter and peak velocity of the mice in each group were then detected using ultrasound.The degree of aortic valve calcification was evaluated using von Kossa and Alizarin Red S staining.The serum triglycerides(TG),total cholesterol(TC),low-density lipoprotein cholesterol(LDL-C),and high-density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Inflammatory factor interleukin-4(IL-4),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)levels were determined using an enzyme-linked immunosorbent assay.The expressions of calcification markers,runt-related transcription factor 2(RUNX2),and bone morphogenetic protein 2(BMP2)were detected using immunohistochemistry.Aortic valve cell apoptosis was evaluated using TUNEL staining,and JNK/c-Jun signaling pathway-related mRNA and mean fluorescence intensity were detected using quantitative real-time PCR and immunofluorescence,respectively.Results Compared with the control group,the mice in the model group showed an increase in serum TC,TG,LDL-C,TNF-α,and IL-1β levels,a decrease in IL-4 and IL-10 levels,a decrease in annulus diameter,an increase in peak flow velocity,and an increase in von Kossa and Alizarin Red S staining-positive areas.Additionally,the model group showed an increase in aortic valve cell apoptosis rate,an increase in BMP2 and RUNX2-positive rates,and an increase in JNK and c-Jun mRNA expression levels and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Compared to the model group,the PNS low-dose group showed a decrease in serum TC,LDL-C,and TNF-α levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in positive area in Alizarin Red S staining.Furthermore,the PNS low-dose group showed a decrease in BMP2 and RUNX2-positive rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).The PNS high-dose group showed an increase in HDL-C,IL-4 and IL-10 levels,a decrease in serum TC,LDL-C,TNF-α,and IL-1β levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in von Kossa and Alizarin Red S staining-positive areas and cell apoptosis rate.The PNS high-dose group also showed a decrease in BMP2 and RUNX2 positive staining rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Conclusion PNS may reduce valvular cell apoptosis,alleviate inflammation,and protect against aortic valve calcification in mice by inhibiting the activation of JNK/c-Jun signaling pathway.
9.The effect and mechanism of Panax notoginseng saponins through inhibiting JNK/c-Jun signaling pathway in calcific aortic valve disease
Hongzheng LI ; Tianjiao LIU ; Zucheng SHANG ; Mengfan LI ; Guosheng LIN ; Bin ZHANG ; Zikai YU ; Changgeng FU ; Yongjian WU ; Keji CHEN
Journal of Beijing University of Traditional Chinese Medicine 2024;47(11):1550-1561
Objective To investigate the effect and mechanism of Panax notoginseng saponins(PNS)in inhibiting c-Jun N-terminal protein kinase(JNK)/c-Jun signaling pathway activation to alleviate calcific aortic valve disease(CAVD)in mice.Methods Twenty-one male ApoE-/-mice aged 6 to 8 weeks were randomly divided into the model,PNS high-dose(60 mg/kg),and PNS low-dose(30 mg/kg)groups using the random number table method,with seven mice per group.Nine male C57BL/6 mice aged 6 to 8 weeks were used as the control group.Mice in the control group were fed a normal diet,whereas ApoE-/-mice were fed a high-fat diet for 12 weeks.After 12 weeks,three C57BL/6 and three ApoE-/-mice(one ApoE-/-mice from each group)were randomly selected to evaluate the CAVD modeling effect.After confirming successful modeling,the PNS high-and low-dose groups received daily intragastric PNS administration.The control and model groups were administered an equal volume of stroke-physiological saline solution by gavage for 4 consecutive weeks.The valve annulus diameter and peak velocity of the mice in each group were then detected using ultrasound.The degree of aortic valve calcification was evaluated using von Kossa and Alizarin Red S staining.The serum triglycerides(TG),total cholesterol(TC),low-density lipoprotein cholesterol(LDL-C),and high-density lipoprotein cholesterol(HDL-C)were detected by biochemical method.Inflammatory factor interleukin-4(IL-4),tumor necrosis factor-α(TNF-α),interleukin-1β(IL-1β),and interleukin-10(IL-10)levels were determined using an enzyme-linked immunosorbent assay.The expressions of calcification markers,runt-related transcription factor 2(RUNX2),and bone morphogenetic protein 2(BMP2)were detected using immunohistochemistry.Aortic valve cell apoptosis was evaluated using TUNEL staining,and JNK/c-Jun signaling pathway-related mRNA and mean fluorescence intensity were detected using quantitative real-time PCR and immunofluorescence,respectively.Results Compared with the control group,the mice in the model group showed an increase in serum TC,TG,LDL-C,TNF-α,and IL-1β levels,a decrease in IL-4 and IL-10 levels,a decrease in annulus diameter,an increase in peak flow velocity,and an increase in von Kossa and Alizarin Red S staining-positive areas.Additionally,the model group showed an increase in aortic valve cell apoptosis rate,an increase in BMP2 and RUNX2-positive rates,and an increase in JNK and c-Jun mRNA expression levels and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Compared to the model group,the PNS low-dose group showed a decrease in serum TC,LDL-C,and TNF-α levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in positive area in Alizarin Red S staining.Furthermore,the PNS low-dose group showed a decrease in BMP2 and RUNX2-positive rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).The PNS high-dose group showed an increase in HDL-C,IL-4 and IL-10 levels,a decrease in serum TC,LDL-C,TNF-α,and IL-1β levels,an increase in annulus diameter,a decrease in peak flow velocity,and a decrease in von Kossa and Alizarin Red S staining-positive areas and cell apoptosis rate.The PNS high-dose group also showed a decrease in BMP2 and RUNX2 positive staining rates,JNK and c-Jun mRNA expression levels,and p-JNK/JNK and p-c-Jun/c-Jun(P<0.05).Conclusion PNS may reduce valvular cell apoptosis,alleviate inflammation,and protect against aortic valve calcification in mice by inhibiting the activation of JNK/c-Jun signaling pathway.
10.Spatial Distribution of Parvalbumin-Positive Fibers in the Mouse Brain and Their Alterations in Mouse Models of Temporal Lobe Epilepsy and Parkinson's Disease.
Changgeng SONG ; Yan ZHAO ; Jiajia ZHANG ; Ziyi DONG ; Xin KANG ; Yuqi PAN ; Jinle DU ; Yiting GAO ; Haifeng ZHANG ; Ye XI ; Hui DING ; Fang KUANG ; Wenting WANG ; Ceng LUO ; Zhengping ZHANG ; Qinpeng ZHAO ; Jiazhou YANG ; Wen JIANG ; Shengxi WU ; Fang GAO
Neuroscience Bulletin 2023;39(11):1683-1702
Parvalbumin interneurons belong to the major types of GABAergic interneurons. Although the distribution and pathological alterations of parvalbumin interneuron somata have been widely studied, the distribution and vulnerability of the neurites and fibers extending from parvalbumin interneurons have not been detailly interrogated. Through the Cre recombinase-reporter system, we visualized parvalbumin-positive fibers and thoroughly investigated their spatial distribution in the mouse brain. We found that parvalbumin fibers are widely distributed in the brain with specific morphological characteristics in different regions, among which the cortex and thalamus exhibited the most intense parvalbumin signals. In regions such as the striatum and optic tract, even long-range thick parvalbumin projections were detected. Furthermore, in mouse models of temporal lobe epilepsy and Parkinson's disease, parvalbumin fibers suffered both massive and subtle morphological alterations. Our study provides an overview of parvalbumin fibers in the brain and emphasizes the potential pathological implications of parvalbumin fiber alterations.
Mice
;
Animals
;
Epilepsy, Temporal Lobe/pathology*
;
Parvalbumins/metabolism*
;
Parkinson Disease/pathology*
;
Neurons/metabolism*
;
Interneurons/physiology*
;
Disease Models, Animal
;
Brain/pathology*

Result Analysis
Print
Save
E-mail