1.FOXO3-engineered human mesenchymal stem cells efficiently enhance post-ischemic stroke functional rehabilitation.
Fangshuo ZHENG ; Jinghui LEI ; Zan HE ; Taixin NING ; Shuhui SUN ; Yusheng CAI ; Qian ZHAO ; Shuai MA ; Weiqi ZHANG ; Jing QU ; Guang-Hui LIU ; Si WANG
Protein & Cell 2025;16(5):365-373
2.Inaugural Scalp Metastasis of Pulmonary Squamous Cell Carcinoma:A Rare Case Report and Literature Review
HE WENBO ; GAO MINGJUN ; REN QINGLIN ; WANG MENGMENG ; ZHOU SIDING ; WANG XIAOLIN ; SHU YUSHENG
Chinese Journal of Lung Cancer 2024;27(4):321-324
Distant cutaneous metastasis of primary lung squamous cell carcinoma is an exceedingly rare event,with scalp metastasis as the initial clinical presentation even rarer.Scalp skin metastases are prone to be misdiagnosed as other scalp disorders,yet their appearance signifies the deterioration and poor prognosis of lung cancer.This case report documents a female patient presenting initially with scalp folliculitis in dermatology,who was subsequently diagnosed with malignant lung tumor through radiological imaging and referred to Department of Thoracic Surgery.Pathological examination of the excised lesion from the scalp revealed distant metastasis of lung cancer.A review of similar cases reported in literature was conducted.This article aims to enhance understanding and awareness of skin metastasis in lung cancer,to emphasize the importance of this condition,and to improve early recognition and precise diagnosis.It is crucial to prevent clinical misdiagnosis and ensure ap-propriate treatment,finally leading to improve the prognosis of the patients.
3.Interpretation of the surgical treatment of pancreatic cancer of the 2024 edition of the NCCN guidelines
Mingjian MA ; He CHENG ; Yusheng CHEN ; Chen LIU ; Xianjun YU
Chinese Journal of Surgery 2024;62(7):659-664
Pancreatic cancer is a highly malignant tumor in the digestive system, and radical surgery is the only possible means to cure pancreatic cancer at present. In the past decade, pancreatic surgery has been developing rapidly, with various new technologies and concepts emerging, among which the use of minimally invasive techniques and the popularization of neoadjuvant therapy concepts are the most notable. At the same time, the surgical treatment of pancreatic cancer still has a long way to go, and many problems need to be solved urgently. This article introduces the surgical treatment of pancreatic cancer in the 2024 edition of the NCCN guidelines, focusing on minimally invasive and open surgical treatments, expanded lymph node dissection, combined vascular resection and reconstruction, surgical treatment of pancreatic neck cancer and neoadjuvant therapy, and briefly discussing the unresolved issues.
4.Interpretation of the surgical treatment of pancreatic cancer of the 2024 edition of the NCCN guidelines
Mingjian MA ; He CHENG ; Yusheng CHEN ; Chen LIU ; Xianjun YU
Chinese Journal of Surgery 2024;62(7):659-664
Pancreatic cancer is a highly malignant tumor in the digestive system, and radical surgery is the only possible means to cure pancreatic cancer at present. In the past decade, pancreatic surgery has been developing rapidly, with various new technologies and concepts emerging, among which the use of minimally invasive techniques and the popularization of neoadjuvant therapy concepts are the most notable. At the same time, the surgical treatment of pancreatic cancer still has a long way to go, and many problems need to be solved urgently. This article introduces the surgical treatment of pancreatic cancer in the 2024 edition of the NCCN guidelines, focusing on minimally invasive and open surgical treatments, expanded lymph node dissection, combined vascular resection and reconstruction, surgical treatment of pancreatic neck cancer and neoadjuvant therapy, and briefly discussing the unresolved issues.
5.Contrast-enhanced CT-based radiomics nomogram for differentiation of low-risk and high-risk thymomas
Qinglin REN ; Wenbo HE ; Jiarui YUE ; Hongbi XIAO ; Yusheng SHU
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2024;31(08):1109-1118
Objective To develop a radiomics nomogram based on contrast-enhanced CT (CECT) for preoperative prediction of high-risk and low-risk thymomas. Methods Clinical data of patients with thymoma who underwent surgical resection and pathological confirmation at Northern Jiangsu People's Hospital from January 2018 to February 2023 were retrospectively analyzed. Feature selection was performed using the Pearson correlation coefficient and least absolute shrinkage and selection operator (LASSO) method. An ExtraTrees classifier was used to construct the radiomics signature model and the radiomics signature. Univariate and multivariable logistic regression was applied to analyze clinical-radiological characteristics and identify variables for developing a clinical model. The radiomics nomogram model was developed by combining the radiomics signature and clinical features. Model performance was evaluated using area under the curve (AUC), sensitivity, specificity, accuracy, negative predictive value, and positive predictive value. Calibration curves and decision curves were plotted to assess model accuracy and clinical values. Results A total of 120 patients including 59 females and 61 males with an average age of 56.30±12.10 years. There were 84 patients in the training group and 36 in the validation group, 62 in the low-risk thymoma group and 58 in the high-risk thymoma group. Radiomics features (1 038 in total) were extracted from the arterial phase of CECT scans, among which 6 radiomics features were used to construct the radiomics signature. The radiomics nomogram model, combining clinical-radiological characteristics and the radiomics signature, achieved an AUC of 0.872 in the training group and 0.833 in the validation group. Decision curve analysis demonstrated better clinical efficacy of the radiomics nomogram than the radiomics signature and clinical model. Conclusion The radiomics nomogram based on CECT showed good diagnostic value in distinguishing high-risk and low-risk thymoma, which may provide a noninvasive and efficient method for clinical decision-making.
6.Tumor mechanomedicine
Hui GUO ; Yusheng HE ; Mengjie LIU ; Bo CHENG ; Feng XU
Chinese Journal of Oncology 2024;46(6):536-548
Malignant tumors represent a significant health challenge, critically impacting human well-being. Malignant tumors have become one of the leading causes of death worldwide. According to statistics from the World Health Organization, nearly one-sixth of global deaths in 2020 were caused by malignant tumors. The burden of malignant tumors in our country is also increasing. In recent years, with population aging and changes in lifestyle, the incidence and mortality rates of malignant tumors in China have been steadily rising, malignant tumors have gradually become one of the main causes of death in China. Developing effective diagnostic and treatment methods is of great significance in reducing the burden of malignant tumors in our country. Historically, the focus has been on leveraging the biochemical cues of tumors for both diagnosis and treatment. While valuable, this strategy does not recapitulate the full complexity of tumor diagnosis and management. Recently, the integration of biomechanics and mechanobiology with oncology has highlighted the importance of mechanical cues, which have emerged as new hallmarks of tumors, regulating tumor initiation and development are expected to open potential novel routes for cancer diagnosis and therapeutic interventions. Despite the advances, a thorough literature review suggests a pronounced gap in our understanding of the mechanical properties of tumors. The clinical community has not yet completely recognized the diagnostic and therapeutic relevance of the mechanical cues of tumors. To bridge this knowledge gap, we propose and introduce the paradigm of "Tumor Mechanomedicine". We provide a comprehensive overview of the multi-scale mechanical characteristics of tumors, exploring their influence on tumor biology, from the aspects of tumor biomechanics, tumor mechanobiology, tumor mechanodiagnostics, and tumor mechanotherapeutics. By elucidating the diagnostic and therapeutic potential of these mechanical cues, we aim to furnish the oncology community with fresh insights, paving the way for innovative solutions to persistent clinical conundrums.
7.Tumor mechanomedicine
Hui GUO ; Yusheng HE ; Mengjie LIU ; Bo CHENG ; Feng XU
Chinese Journal of Oncology 2024;46(6):536-548
Malignant tumors represent a significant health challenge, critically impacting human well-being. Malignant tumors have become one of the leading causes of death worldwide. According to statistics from the World Health Organization, nearly one-sixth of global deaths in 2020 were caused by malignant tumors. The burden of malignant tumors in our country is also increasing. In recent years, with population aging and changes in lifestyle, the incidence and mortality rates of malignant tumors in China have been steadily rising, malignant tumors have gradually become one of the main causes of death in China. Developing effective diagnostic and treatment methods is of great significance in reducing the burden of malignant tumors in our country. Historically, the focus has been on leveraging the biochemical cues of tumors for both diagnosis and treatment. While valuable, this strategy does not recapitulate the full complexity of tumor diagnosis and management. Recently, the integration of biomechanics and mechanobiology with oncology has highlighted the importance of mechanical cues, which have emerged as new hallmarks of tumors, regulating tumor initiation and development are expected to open potential novel routes for cancer diagnosis and therapeutic interventions. Despite the advances, a thorough literature review suggests a pronounced gap in our understanding of the mechanical properties of tumors. The clinical community has not yet completely recognized the diagnostic and therapeutic relevance of the mechanical cues of tumors. To bridge this knowledge gap, we propose and introduce the paradigm of "Tumor Mechanomedicine". We provide a comprehensive overview of the multi-scale mechanical characteristics of tumors, exploring their influence on tumor biology, from the aspects of tumor biomechanics, tumor mechanobiology, tumor mechanodiagnostics, and tumor mechanotherapeutics. By elucidating the diagnostic and therapeutic potential of these mechanical cues, we aim to furnish the oncology community with fresh insights, paving the way for innovative solutions to persistent clinical conundrums.
8.Tumor mechanomedicine
Hui GUO ; Yusheng HE ; Mengjie LIU ; Bo CHENG ; Feng XU
Chinese Journal of Oncology 2024;46(6):536-548
Malignant tumors represent a significant health challenge, critically impacting human well-being. Malignant tumors have become one of the leading causes of death worldwide. According to statistics from the World Health Organization, nearly one-sixth of global deaths in 2020 were caused by malignant tumors. The burden of malignant tumors in our country is also increasing. In recent years, with population aging and changes in lifestyle, the incidence and mortality rates of malignant tumors in China have been steadily rising, malignant tumors have gradually become one of the main causes of death in China. Developing effective diagnostic and treatment methods is of great significance in reducing the burden of malignant tumors in our country. Historically, the focus has been on leveraging the biochemical cues of tumors for both diagnosis and treatment. While valuable, this strategy does not recapitulate the full complexity of tumor diagnosis and management. Recently, the integration of biomechanics and mechanobiology with oncology has highlighted the importance of mechanical cues, which have emerged as new hallmarks of tumors, regulating tumor initiation and development are expected to open potential novel routes for cancer diagnosis and therapeutic interventions. Despite the advances, a thorough literature review suggests a pronounced gap in our understanding of the mechanical properties of tumors. The clinical community has not yet completely recognized the diagnostic and therapeutic relevance of the mechanical cues of tumors. To bridge this knowledge gap, we propose and introduce the paradigm of "Tumor Mechanomedicine". We provide a comprehensive overview of the multi-scale mechanical characteristics of tumors, exploring their influence on tumor biology, from the aspects of tumor biomechanics, tumor mechanobiology, tumor mechanodiagnostics, and tumor mechanotherapeutics. By elucidating the diagnostic and therapeutic potential of these mechanical cues, we aim to furnish the oncology community with fresh insights, paving the way for innovative solutions to persistent clinical conundrums.
9.Tumor mechanomedicine
Hui GUO ; Yusheng HE ; Mengjie LIU ; Bo CHENG ; Feng XU
Chinese Journal of Oncology 2024;46(6):536-548
Malignant tumors represent a significant health challenge, critically impacting human well-being. Malignant tumors have become one of the leading causes of death worldwide. According to statistics from the World Health Organization, nearly one-sixth of global deaths in 2020 were caused by malignant tumors. The burden of malignant tumors in our country is also increasing. In recent years, with population aging and changes in lifestyle, the incidence and mortality rates of malignant tumors in China have been steadily rising, malignant tumors have gradually become one of the main causes of death in China. Developing effective diagnostic and treatment methods is of great significance in reducing the burden of malignant tumors in our country. Historically, the focus has been on leveraging the biochemical cues of tumors for both diagnosis and treatment. While valuable, this strategy does not recapitulate the full complexity of tumor diagnosis and management. Recently, the integration of biomechanics and mechanobiology with oncology has highlighted the importance of mechanical cues, which have emerged as new hallmarks of tumors, regulating tumor initiation and development are expected to open potential novel routes for cancer diagnosis and therapeutic interventions. Despite the advances, a thorough literature review suggests a pronounced gap in our understanding of the mechanical properties of tumors. The clinical community has not yet completely recognized the diagnostic and therapeutic relevance of the mechanical cues of tumors. To bridge this knowledge gap, we propose and introduce the paradigm of "Tumor Mechanomedicine". We provide a comprehensive overview of the multi-scale mechanical characteristics of tumors, exploring their influence on tumor biology, from the aspects of tumor biomechanics, tumor mechanobiology, tumor mechanodiagnostics, and tumor mechanotherapeutics. By elucidating the diagnostic and therapeutic potential of these mechanical cues, we aim to furnish the oncology community with fresh insights, paving the way for innovative solutions to persistent clinical conundrums.
10.Tumor mechanomedicine
Hui GUO ; Yusheng HE ; Mengjie LIU ; Bo CHENG ; Feng XU
Chinese Journal of Oncology 2024;46(6):536-548
Malignant tumors represent a significant health challenge, critically impacting human well-being. Malignant tumors have become one of the leading causes of death worldwide. According to statistics from the World Health Organization, nearly one-sixth of global deaths in 2020 were caused by malignant tumors. The burden of malignant tumors in our country is also increasing. In recent years, with population aging and changes in lifestyle, the incidence and mortality rates of malignant tumors in China have been steadily rising, malignant tumors have gradually become one of the main causes of death in China. Developing effective diagnostic and treatment methods is of great significance in reducing the burden of malignant tumors in our country. Historically, the focus has been on leveraging the biochemical cues of tumors for both diagnosis and treatment. While valuable, this strategy does not recapitulate the full complexity of tumor diagnosis and management. Recently, the integration of biomechanics and mechanobiology with oncology has highlighted the importance of mechanical cues, which have emerged as new hallmarks of tumors, regulating tumor initiation and development are expected to open potential novel routes for cancer diagnosis and therapeutic interventions. Despite the advances, a thorough literature review suggests a pronounced gap in our understanding of the mechanical properties of tumors. The clinical community has not yet completely recognized the diagnostic and therapeutic relevance of the mechanical cues of tumors. To bridge this knowledge gap, we propose and introduce the paradigm of "Tumor Mechanomedicine". We provide a comprehensive overview of the multi-scale mechanical characteristics of tumors, exploring their influence on tumor biology, from the aspects of tumor biomechanics, tumor mechanobiology, tumor mechanodiagnostics, and tumor mechanotherapeutics. By elucidating the diagnostic and therapeutic potential of these mechanical cues, we aim to furnish the oncology community with fresh insights, paving the way for innovative solutions to persistent clinical conundrums.

Result Analysis
Print
Save
E-mail