1.Effect of Icariin on Myocardial Remodeling in Rats Based on Vitamin D Regulation of Dendritic Cell Phenotype
Qian LI ; Yujia CHEN ; Yan ZHOU ; Wen LI ; Liancheng GUAN ; Huanzhen WANG ; Yunzhi CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):76-85
ObjectiveTo investigate the effect of icariin (ICA) on the phenotype of dendritic cells (DCs) in heart tissue of the Dahl salt-sensitive myocardial remodeling model of rats and its regulation on the vitamin D system. MethodsMale Dahl salt-resistant rats were divided into a normal group, and male Dahl salt-sensitive rats were divided into a model group, low-, medium-, and high-dose ICA groups (30, 60, 120 mg·kg-1·d-1), and Vitamin D group (3×10-5 mg·kg-1·d-1). In addition to the normal group, the other groups were given an 8% high salt diet to establish a myocardial remodeling model and received intragastric administration after successful modelling once a day for six weeks. The dynamic changes in tail artery blood pressure were monitored, and detection of cardiac ultrasound function in rats was performed. Hematoxylin-eosin (HE) staining and Masson staining were used to observe the morphological changes in rat heart tissue. The phenotype of DCs and T helper cell 17 (Th17)/regulatory T cell (Treg) ratio were detected by flow cytometry. The mRNA and protein expression of vitamin D receptor (VDR), 1α-hydroxylase (CYP27B1), 24-hydroxylase (CYP24A1), forkhead frame protein 3 (FoxP3), solitaire receptor γt (RORγt), myocardial type Ⅰ collagen (ColⅠ), and type collagen (ColⅢ) in heart tissue was detected by real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot. ResultsCompared with the normal group, the model group showed disordered arrangement and rupture of myocardial cells, nuclear condensation, significant edema of myocardial tissue, significant proliferation of collagen fibers in a network distribution, and a significant increase in tail artery blood pressure, left ventricular end diastolic diameter (LVEDD), and left ventricular end systolic diameter (LVESD) (P<0.05). The phenotype of cardiac DCs was CD40, CD80, and CD86, and the levels of major histocompatibility complex Ⅱ (MHC-Ⅱ), Th17 cells, and Th17/Treg were significantly increased (P<0.05). The mRNA and protein expression of CYP24A1 and RORγt in the heart, as well as the mRNA expression of ColⅠ and ColⅢ, were significantly increased (P<0.05). The left ventricular ejection fraction (LVEF), interventricular septal thickness (IVSD), and left ventricular posterior wall thickness (LVPWD) were significantly decreased (P<0.05). The phenotype of cardiac DCs such as CD11, CD11b, and Treg cells, were significantly reduced (P<0.05), while the mRNA and protein expression of cardiac VDR, CYP27B1, and FoxP3 were significantly decreased (P<0.05). Compared with the model group, the low-, medium-, and high-dose ICA groups and vitamin D group significantly reduced myocardial cell rupture and nuclear consolidation in rats. The high-dose ICA group and vitamin D group showed a small amount of myocardial cell rupture and nuclear consolidation, improving myocardial fiber arrangement to varying degrees and significantly reducing myocardial fiber rupture and proliferation. The tail artery blood pressure, LVEDD, and LVESD were significantly decreased in the low-, medium-, and high-dose ICA groups and vitamin D group (P<0.05), and the phenotype of cardiac DCs including CD40, CD80, CD86, MHC-Ⅱ, Th17 cells, and Th17/Treg were significantly decreased (P<0.05). The mRNA and protein expression of CYP24A1 and RORγt, and the mRNA expression of ColⅠ and ColⅢ in the heart were significantly decreased in the medium- and high-dose ICA groups and vitamin D group (P<0.05). The LVEF, IVSD, and LVPWD of myocardial remodeling model rats in the low-, medium-, and high-dose ICA groups and vitamin D group were significantly increased (P<0.05). The phenotypes of cardiac DCs including CD11, CD11b, and Treg cells were significantly increased in the medium- and high-dose ICA groups and the Vitamin D group (P<0.05). The mRNA and protein expressions of VDR, CYP27B1, and FoxP3 in the heart were significantly increased in the medium- and high-dose ICA groups and vitamin D group (P<0.05). ConclusionICA can regulate tail artery blood pressure, cardiac structural and functional damage, and myocardial tissue fibrosis and inhibit phenotype and functional maturation of DCs in heart tissue in the myocardial remodeling model of Dahl salt-sensitive rats. It can also affect the gene and protein expression of VDR, CYP24A1, and CYP27B1, achieving its intervention in Th17/Treg balance in the immune process of myocardial remodeling possibly by regulating vitamin D/VDR in heart tissue.
2.Current status of cognitive frailty among the elderly in community
ZHAI Yujia ; ZHANG Tao ; GU Xue ; XU Le ; WU Mengna ; LIN Junfen ; WU Chen
Journal of Preventive Medicine 2025;37(8):762-766,772
Objective:
To investigate the current status and influencing factors for cognitive frailty among the elderly in community, so as to provide the evidence for early identification and prevention of cognitive frailty among the elderly.
Methods:
Residents aged 60 years and above with local household registration from 11 counties (cities, districts) in Zhejiang Province from 2021 to 2023 were selected as study participants using a multistage random sampling method. Demographic information, lifestyle, and health status were collected through questionnaire surveys. Depressive symptoms were assessed using the Patient Health Questionnaire. Cognitive frailty was evaluated using the FRAIL Scale and the Mini-Mental State Examination. Factors affecting cognitive frailty among the elderly in community were identified using a multivariable logistic regression model.
Results:
A total of 16 613 individuals were surveyed, including 7 465 males (44.93%) and 9 148 females (55.07%). The average age was (70.97±7.29) years. A total of 784 individuals were detected with depressive symptoms, with a detection rate of 4.72%. A total of 724 individuals were detected with cognitive frailty, with a detection rate of 4.36%. Multivariable logistic regression analysis showed that females (OR=1.419, 95%CI: 1.179-1.708), aged ≥70 years (70-<80 years old, OR=1.869, 95%CI: 1.490-2.345; ≥80 years old, OR=5.017, 95%CI: 3.935-6.398), without a spouse (OR=1.495, 95%CI: 1.234-1.810), sedentary (OR=2.420, 95%CI: 1.829-3.202), chronic diseases (1 type, OR=1.456, 95%CI: 1.175-1.804; ≥2 types, OR=1.639, 95%CI: 1.314-2.045), and depressive symptoms (OR=4.191, 95%CI: 3.361-5.225) were associated with a higher risk of cognitive frailty among the elderly in community. Conversely, a lower risk of cognitive frailty was seen among the elderly in community who had primary school or above (primary school, OR=0.512, 95%CI: 0.389-0.676; junior high school or above, OR=0.464, 95%CI: 0.354-0.608), engaged in physical exercise (OR=0.396, 95%CI: 0.291-0.539), and were reported average or good self-rated health status (average, OR=0.641, 95%CI: 0.475-0.866; good, OR=0.150, 95%CI: 0.109-0.208).
Conclusions
The detection rate of cognitive frailty among the elderly in community is relatively low and is influenced by demographic factors such as gender, age, education level, as well as lifestyle like sedentary and physical exercise, and health status. It is recommended to reduce the risk of cognitive frailty among the elderly through multidimensional interventions, including health education, promotion of healthy lifestyles, and enhanced mental health support.
3.Role of sphingolipid metabolism signaling in a novel mouse model of renal osteodystrophy based on transcriptomic approach.
Yujia WANG ; Yan DI ; Yongqi LI ; Jing LU ; Bofan JI ; Yuxia ZHANG ; Zhiqing CHEN ; Sijie CHEN ; Bicheng LIU ; Rining TANG
Chinese Medical Journal 2025;138(1):68-78
BACKGROUND:
Renal osteodystrophy (ROD) is a skeletal pathology associated with chronic kidney disease-mineral and bone disorder (CKD-MBD) that is characterized by aberrant bone mineralization and remodeling. ROD increases the risk of fracture and mortality in CKD patients. The underlying mechanisms of ROD remain elusive, partially due to the absence of an appropriate animal model. To address this gap, we established a stable mouse model of ROD using an optimized adenine-enriched diet and conducted exploratory analyses through ribonucleic acid sequencing (RNA-seq).
METHODS:
Eight-week-old male C57BL/6J mice were randomly allocated into three groups: control group ( n = 5), adenine and high-phosphate (HP) diet group ( n = 20), and the optimized adenine-containing diet group ( n = 20) for 12 weeks. We assessed the skeletal characteristics of model mice through blood biochemistry, microcomputed tomography (micro-CT), and bone histomorphometry. RNA-seq was utilized to profile gene expression changes of ROD. We elucidated the functions of differentially expressed genes (DEGs) using gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, and gene set enrichment analysis (GSEA). DEGs were validated via quantitative real-time polymerase chain reaction (qRT-PCR).
RESULTS:
By the fifth week, adenine followed by an HP diet induced rapid weight loss and high mortality rates in the mouse group, precluding further model development. Mice with optimized adenine diet-induced ROD displayed significant abnormalities in serum creatinine and blood urea nitrogen levels, accompanied by pronounced hyperparathyroidism and hyperphosphatemia. The femur bone mineral density (BMD) of the model mice was lower than that of control mice, with substantial bone loss and cortical porosity. ROD mice exhibited substantial bone turnover with an increase in osteoblast and osteoclast markers. Transcriptomic profiling revealed 1907 genes with upregulated expression and 723 genes with downregulated expression in the femurs of ROD mice relative to those of control mice. Pathway analyses indicated significant enrichment of upregulated genes in the sphingolipid metabolism pathway. The significant upregulation of alkaline ceramidase 1 ( Acer1 ), alkaline ceramidase 2 ( Acer2 ), prosaposin-like 1 ( Psapl1 ), adenosine A1 receptor ( Adora1 ), and sphingosine-1-phosphate receptor 5 ( S1pr5 ) were successfully validated in mouse femurs by qRT-PCR.
CONCLUSIONS
Optimized adenine diet mouse model may be a valuable proxy for studying ROD. RNA-seq analysis revealed that the sphingolipid metabolism pathway is likely a key player in ROD pathogenesis, thereby providing new avenues for therapeutic intervention.
Animals
;
Mice
;
Chronic Kidney Disease-Mineral and Bone Disorder/genetics*
;
Male
;
Disease Models, Animal
;
Mice, Inbred C57BL
;
Sphingolipids/metabolism*
;
Transcriptome/genetics*
;
Signal Transduction/genetics*
;
X-Ray Microtomography
;
Adenine
4.Artificial intelligence in prostate cancer.
Wei LI ; Ruoyu HU ; Quan ZHANG ; Zhangsheng YU ; Longxin DENG ; Xinhao ZHU ; Yujia XIA ; Zijian SONG ; Alessia CIMADAMORE ; Fei CHEN ; Antonio LOPEZ-BELTRAN ; Rodolfo MONTIRONI ; Liang CHENG ; Rui CHEN
Chinese Medical Journal 2025;138(15):1769-1782
Prostate cancer (PCa) ranks as the second most prevalent malignancy among men worldwide. Early diagnosis, personalized treatment, and prognosis prediction of PCa play a crucial role in improving patients' survival rates. The advancement of artificial intelligence (AI), particularly the utilization of deep learning (DL) algorithms, has brought about substantial progress in assisting the diagnosis, treatment, and prognosis prediction of PCa. The introduction of the foundation model has revolutionized the application of AI in medical treatment and facilitated its integration into clinical practice. This review emphasizes the clinical application of AI in PCa by discussing recent advancements from both pathological and imaging perspectives. Furthermore, it explores the current challenges faced by AI in clinical applications while also considering future developments, aiming to provide a valuable point of reference for the integration of AI and clinical applications.
Humans
;
Prostatic Neoplasms/diagnosis*
;
Male
;
Artificial Intelligence
;
Deep Learning
;
Prognosis
5.Role and mechanism of ubiquitin-specific protease 35 in ferroptosis of rheumatoid arthritis-fibroblast like synoviocytes.
Lianghua FENG ; Lirong HONG ; Yujia CHEN ; Xueming CAI
Journal of Peking University(Health Sciences) 2025;57(5):919-925
OBJECTIVE:
To elucidate the role and underlying mechanism of ubiquitin-specific protease 35 (USP35) in ferroptosis of rheumatoid arthritis-fibroblast like synoviocytes (RA-FLS), thereby enhancing our comprehension of the pathogenesis of RA and identifying potential therapeutic targets for its treatment.
METHODS:
(1) RA-FLS were cultured in vitro and transduced with lentiviral vectors to establish stable cell lines: A USP35-knockdown line (short hairpin ribonucleic acid of USP35, shUSP35) and its control (negtive control of short hairpin ribonucleic acid, shNC), as well as a overexpression of USP35 line (USP35 OE) and its control (Vector). To investigate the role of USP35 in ferroptosis regulation, a ferroptosis model was induced in RA-FLS by treatment with 1 μmol/L Erastin. The cells were divided into six groups: shNC, shNC + Erastin, shUSP35 + Erastin, Vector, Vector + Erastin, and USP35 OE + Erastin. (2) Cell viability was detected using the cell counting kit-8 (CCK-8). (3) Reactive oxygen species (ROS), malondialdehyde (MDA), glutathione/glutathione disulfide (GSH/GSSG) ratios, and Ferrous ion (Fe2+) levels were measured using specific assay kits to evaluate oxidative stress, lipid peroxidation, and glutathione redox status in the cells. (4) Protein expression levels of solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) were detected using Western blotting to investigate their potential involvement in USP35-mediated ferroptosis regulation.
RESULTS:
(1) Compared with the shNC +Erastin group, the cell viability of the shUSP35+Erastin group was significantly decreased (P < 0.001), while it was notably increased in the USP35 OE+Erastin group compared with the Vector+Erastin group (P < 0.001). These findings indicated that USP35 could alleviate the inhibitory effect of Erastin on RA-FLS cell viability. (2) In comparison to the shNC+Erastin group, the levels of ROS (P < 0.001), MDA (P < 0.05), and Fe2+ (P < 0.001) were significantly elevated, and the GSH/GSSG ratio was increased (P < 0.05) in the shUSP35+Erastin group. Conversely, the levels of ROS (P < 0.001), MDA (P < 0.05), and Fe2+ (P < 0.05) were significantly decreased, and the GSH/GSSG ratio was decreased (P < 0.05) in the USP35 OE+Erastin group compared with the Vector+Erastin group. These results suggested that USP35 could inhibit Erastin-induced oxidative stress and lipid peroxidation in RA-FLS. (3) In Erastin-induced RA-FLS, the expression of USP35 was positively correlated with the protein levels of SLC7A11 and GPX4, indicating a potential mechanism by which USP35 regulated ferroptosis in these cells.
CONCLUSION
USP35 inhibits ferroptosis in RA-FLS, potentially through the increased expression of SLC7A11 and GPX4.
Ferroptosis
;
Humans
;
Arthritis, Rheumatoid/metabolism*
;
Synoviocytes/pathology*
;
Reactive Oxygen Species/metabolism*
;
Ubiquitin-Specific Proteases/metabolism*
;
Fibroblasts/pathology*
;
Cell Survival
;
Piperazines/pharmacology*
;
Endopeptidases/metabolism*
;
Cells, Cultured
;
Cell Line
;
Amino Acid Transport System y+
6.Differential expressions of exosomal miRNAs in patients with chronic heart failure and hyperuricemia: diagnostic values of miR-27a-5p and miR-139-3p.
Zhiliang CHEN ; Yonggang YANG ; Xia HUANG ; Yan CHENG ; Yuan QU ; Qiqi HENG ; Yujia FU ; Kewei LI ; Ning GU
Journal of Southern Medical University 2025;45(1):43-51
OBJECTIVES:
To analyze the differentially expressed exosomal miRNAs in patients with chronic heart failure (CHF) complicated by hyperuricemia (HUA) and explore their potential as novel diagnostic molecular markers and their target genes.
METHODS:
This study was conducted among 30 CHF patients with HUA (observation group) and 30 healthy volunteers (control group) enrolled between September, 2020 and September, 2023. Peripheral blood samples were collected from 6 CHF patients with HUA for analyzing exosomal miRNAs by high-throughput sequencing, and the results were validated in the remaining 24 patients using qRT-PCR. GO and KEGG enrichment analyses were performed to predict the the target genes of the identified differential miRNAs. We also validated the differentially expressed miRNAs by animal experiment.
RESULTS:
A total of 42 differentially expressed exosomal miRNAs were detected in observation group by high-throughput sequencing; among them, miR-27a-5p was significantly upregulated (P=0.000179), and miR-139-3p was significantly downregulated (P=0.000058). In the 24 patients with both CHF and PUA, qRT-PCR validated significant upregulation of miR-27a-5p (P=0.004) and downregulation of miR-139-3p (P=0.005) in serum exosomes. When combined, miR-27a-5p and miR-139-3p had a maximum area under the curve (AUC) of 0.899 (95% CI: 0812-0.987) for predicting CHF complicated by HUA. GO and KEGG enrichment analyses suggested that the differential expressions of miR-27a-5p and miR-139-3p was associated with the activation of the AMPK-mTOR signaling pathway to activate the autophagic response. We obtained the same conclusion from animal experiment.
CONCLUSIONS
Upregulated exosomal miR-27a-5p combined with downregulated exosomal miR-139-3p expression can serve as a novel molecular marker for diagnosis of CHF complicated by HUA, and their differential expression may promote autophagy in cardiomyocytes by activating the AMPK-mTOR signaling pathway.
Humans
;
Hyperuricemia/diagnosis*
;
Heart Failure/genetics*
;
MicroRNAs/metabolism*
;
Exosomes/metabolism*
;
Chronic Disease
;
Male
;
Female
;
Middle Aged
;
Animals
7.Noncoding RNA Terc-53 and hyaluronan receptor Hmmr regulate aging in mice.
Sipeng WU ; Yiqi CAI ; Lixiao ZHANG ; Xiang LI ; Xu LIU ; Guangkeng ZHOU ; Hongdi LUO ; Renjian LI ; Yujia HUO ; Zhirong ZHANG ; Siyi CHEN ; Jinliang HUANG ; Jiahao SHI ; Shanwei DING ; Zhe SUN ; Zizhuo ZHOU ; Pengcheng WANG ; Geng WANG
Protein & Cell 2025;16(1):28-48
One of the basic questions in the aging field is whether there is a fundamental difference between the aging of lower invertebrates and mammals. A major difference between the lower invertebrates and mammals is the abundancy of noncoding RNAs, most of which are not conserved. We have previously identified a noncoding RNA Terc-53 that is derived from the RNA component of telomerase Terc. To study its physiological functions, we generated two transgenic mouse models overexpressing the RNA in wild-type and early-aging Terc-/- backgrounds. Terc-53 mice showed age-related cognition decline and shortened life span, even though no developmental defects or physiological abnormality at an early age was observed, indicating its involvement in normal aging of mammals. Subsequent mechanistic study identified hyaluronan-mediated motility receptor (Hmmr) as the main effector of Terc-53. Terc-53 mediates the degradation of Hmmr, leading to an increase of inflammation in the affected tissues, accelerating organismal aging. adeno-associated virus delivered supplementation of Hmmr in the hippocampus reversed the cognition decline in Terc-53 transgenic mice. Neither Terc-53 nor Hmmr has homologs in C. elegans. Neither do arthropods express hyaluronan. These findings demonstrate the complexity of aging in mammals and open new paths for exploring noncoding RNA and Hmmr as means of treating age-related physical debilities and improving healthspan.
Animals
;
Mice
;
RNA, Untranslated/metabolism*
;
Aging/genetics*
;
Mice, Transgenic
;
Telomerase/metabolism*
;
RNA/genetics*
;
Hippocampus/metabolism*
;
Humans
;
Mice, Inbred C57BL
8.Ursodeoxycholic acid inhibits the uptake of cystine through SLC7A11 and impairs de novo synthesis of glutathione.
Fu'an XIE ; Yujia NIU ; Xiaobing CHEN ; Xu KONG ; Guangting YAN ; Aobo ZHUANG ; Xi LI ; Lanlan LIAN ; Dongmei QIN ; Quan ZHANG ; Ruyi ZHANG ; Kunrong YANG ; Xiaogang XIA ; Kun CHEN ; Mengmeng XIAO ; Chunkang YANG ; Ting WU ; Ye SHEN ; Chundong YU ; Chenghua LUO ; Shu-Hai LIN ; Wengang LI
Journal of Pharmaceutical Analysis 2025;15(1):101068-101068
Ursodeoxycholic acid (UDCA) is a naturally occurring, low-toxicity, and hydrophilic bile acid (BA) in the human body that is converted by intestinal flora using primary BA. Solute carrier family 7 member 11 (SLC7A11) functions to uptake extracellular cystine in exchange for glutamate, and is highly expressed in a variety of human cancers. Retroperitoneal liposarcoma (RLPS) refers to liposarcoma originating from the retroperitoneal area. Lipidomics analysis revealed that UDCA was one of the most significantly downregulated metabolites in sera of RLPS patients compared with healthy subjects. The augmentation of UDCA concentration (≥25 μg/mL) demonstrated a suppressive effect on the proliferation of liposarcoma cells. [15N2]-cystine and [13C5]-glutamine isotope tracing revealed that UDCA impairs cystine uptake and glutathione (GSH) synthesis. Mechanistically, UDCA binds to the cystine transporter SLC7A11 to inhibit cystine uptake and impair GSH de novo synthesis, leading to reactive oxygen species (ROS) accumulation and mitochondrial oxidative damage. Furthermore, UDCA can promote the anti-cancer effects of ferroptosis inducers (Erastin, RSL3), the murine double minute 2 (MDM2) inhibitors (Nutlin 3a, RG7112), cyclin dependent kinase 4 (CDK4) inhibitor (Abemaciclib), and glutaminase inhibitor (CB839). Together, UDCA functions as a cystine exchange factor that binds to SLC7A11 for antitumor activity, and SLC7A11 is not only a new transporter for BA but also a clinically applicable target for UDCA. More importantly, in combination with other antitumor chemotherapy or physiotherapy treatments, UDCA may provide effective and promising treatment strategies for RLPS or other types of tumors in a ROS-dependent manner.
9.Association between insomnia and type 2 diabetes:A two-sample Mendelian rando-mization study
Yujia MA ; Ranli LU ; Zechen ZHOU ; Xiaoyi LI ; Zeyu YAN ; Yiqun WU ; Dafang CHEN
Journal of Peking University(Health Sciences) 2024;56(1):174-178
Objective:To explore the robust relationship between insomnia and type 2 diabetes mellitus by two-sample Mendelian randomization analysis to overcome confounding factors and reverse causality in observational studies.Methods:We identified strong,independent single nucleotide polymorphisms(SNPs)of insomnia from the most up to date genome wide association studies(GWAS)within European ancestors and applied them as instrumental variable to GWAS of type 2 diabetes mellitus.After excluding SNPs that were significantly associated with smoking,physical activity,alcohol consumption,educational attainment,obesity,or type 2 diabetes mellitus,we assessed the impact of insomnia on type 2 diabetes mellitus using inverse variance weighting(IVW)method.Weighted median and MR-Egger regression analysis were also conducted to test the robustness of the association.We calculated the F statistic of the selected SNPs to test the applicability of instrumental variable and F statistic over than ten indicated that there was little possibility of bias of weak instrumental variables.We further examined the existence of pleiotropy by testing whether the intercept term in MR-Egger regression was significantly different from ze-ro.In addition,the leave-one-out method was used for sensitivity analysis to verify the stability and relia-bility of the results.Results:We selected 248 SNPs independently associated with insomnia at the genome-wide level(P<5 ×10-8)as a preliminary candidate set of instrumental variables.After clum-ping based on the reference panel from 1000 Genome Project and removing the potential pleiotropic SNPs,a total of 167 SNPs associated with insomnia were included as final instrumental variables.The F statistic of this study was 39.74,which was in line with the relevance assumption of Mendelian randomi-zation.IVW method showed insomnia was associated with higher risk of type 2 diabetes mellitus that po-pulation with insomnia were 1.14 times more likely to develop type 2 diabetes mellitus than those without insomnia(95%CI:1.09-1.21,P<0.001).The weighted median estimator(WME)method and MR-Egger regression showed similar causal effect of insomnia on type 2 diabetes mellitus.And MR-Egger re-gression also showed that the effect was less likely to be triggered by pleiotropy.Sensitivity analyses pro-duced directionally similar estimates.Conclusion:Insomnia is a risk factor of type 2 diabetes mellitus,which has positively effects on type 2 diabetes mellitus.Our study provides further rationale for indivi-duals at risk for diabetes to keep healthy lifestyle.
10.Effect of Icariin on Peripheral Blood Dendritic Cells and Th17/Treg Balance in Myocardial Remodeling Model of Dahl Salt-sensitive Rats
Qian LI ; Yan ZHOU ; Yujia CHEN ; Wen LI ; Huanzhen WANG ; Liancheng GUAN ; Yunzhi CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(15):46-55
ObjectiveTo investigate the effect of icariin (ICA)-mediated vitamin D system on peripheral blood dendritic cells (DCs) and helper T cells 17 (Th17)/regulatory T cells (Treg) balance in myocardial remodeling model of Dahl salt-sensitive rats. MethodFifty SPF Dahl salt-sensitive rats were divided into model group, vitamin D group (3×10-5 mg·kg-1·d-1), and high-, medium-, and low-dose ICA groups (120, 60, 30 mg·kg-1·d-1), and 10 Dahl salt-resistant rats were used as normal group. The myocardial remodeling model was established by feeding rats with a high-salt diet containing 8% NaCl. After six weeks of modeling, the normal group and the model group were given an equal volume of ultrapure water by gavage, and other groups were continuously administrated for six weeks. Cardiac echocardiography, hematoxylin-eosin (HE) staining, and Masson staining were used to observe the pathological changes in cardiac structure and fibrosis. The levels of serum 25(OH)D3, B-type N-terminal pro-brain natriuretic peptide (NT-ProBNP), interleukin (IL)-17, transforming growth factor (TGF)-β1, IL-12, and IL-10 were detected by enzyme-linked immunosorbent assay (ELISA). The phenotype of peripheral blood DCs and the ratio of Th17/Treg cells of rats were detected by flow cytometry. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were used to detect the mRNA and protein expressions of vitamin D receptor (VDR),1α-hydroxylase (CYP27B1), and 24-hydroxylase (CYP24A1) in peripheral blood DCs of rats. ResultCompared with the control group, the rats in the model group had pathological changes such as disordered arrangement of myocardial cells and cytoplasmic hypertrophy and swelling. Myocardial collagen fibers proliferated significantly, and the arrangement of myocardial fibers was disordered. The levels of serum 25(OH)D3 and IL-10 were significantly decreased, and the levels of serum IL-17, TGF-β1, IL-6, IL-12, and NT-ProBNP were significantly increased (P<0.05). The costimulatory molecules CD40, CD80, CD86, and MHC-Ⅱ were highly expressed in the peripheral blood DCs, and the expression of CD11 and CD11b was lower (P<0.05). The proportion of Th17 cells in the peripheral blood was significantly increased, and the proportion of Treg cells was decreased. The ratio of Th17/Treg was increased (P<0.05). The mRNA and protein expressions of CYP24A1 in peripheral blood DCs increased, and the mRNA and protein expressions of CYP27B1 and VDR decreased (P<0.05). Compared with the model group, the arrangement of myocardial fibers in each drug administration group was relatively regular, and the swelling of myocardial cells was significantly reduced. The pathological morphology of myocardial tissue was improved to varying degrees. The pathological changes in myocardial tissue were improved and alleviated to varying degrees. The drug could reduce the serum levels of NT-ProBNP, IL-17, TGF-β1, IL-6, and IL-12 and increase the level of serum 25(OH)D3 and IL-10 (P<0.05). The expression of costimulatory molecules CD40, CD80, CD86, and MHC-Ⅱ in the peripheral blood DCs of rats was decreased, and the expression of CD11 and CD11b molecules was increased (P<0.05). The drug could reduce the proportion of Th17 cells in peripheral blood and the ratio of Th17/Treg cells and increase the proportion of Treg cells (P<0.05). It could decrease the mRNA and protein expressions of CYP24A1 in peripheral blood DCs of rats and elevate the mRNA and protein expression of VDR and CYP27B1 (P<0.05). ConclusionICA can regulate the phenotype of peripheral blood DCs and the ratio of Th17/Treg cells by regulating the vitamin D system and play a role in improving myocardial remodeling from the perspective of immune balance.


Result Analysis
Print
Save
E-mail