1.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
2.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
3.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
4.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
5.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
6.Mechanism of action of Xipayimaizibizi oral liquid on outlet obstruction-induced overactive bladder: An integrated study
Menglu Wang ; Yang Yang ; Yuhang Du ; Jiamei Xie ; Yige Zhao ; Yongcheng An ; Ziyi Shan ; Shenyujun Wang ; Meng Hao ; Baosheng Zhao
Journal of Traditional Chinese Medical Sciences 2025;2025(1):86-99
Objective:
To observe the effect of Xipayimaizibizi oral liquid (XP) in an overactive bladder (OAB) experimental rat model and to explore its pharmacological mechanisms.
Methods:
Network pharmacology was used to explore the potential mechanisms of action of XP. The rats underwent bladder outlet obstruction surgery and were administered the corresponding drug concentrations by gavage for 4 weeks. The study observed the body weight, water intake, bladder and kidney indices (to evaluate their general status), urination behavior pattern (to observe frequency and urgency), and urodynamics (to measure bladder parameters). Hematoxylin and eosin and Masson's trichome staining were used to observe changes in the bladder structure. Enzyme-linked immunosorbent assay was used to measure the levels of nerve growth factor, brain-derived neurotrophic factor, and acetylcholine in the urine. The key targets involved in these mechanisms were validated using reverse transcription-quantitative polymerase chain reaction, immunohistochemistry, and western blot in vivo/vitro experiments.
Result:
Network pharmacological analysis predicted that XP may alleviate OAB by affecting the cholinergic synapse and calcium signaling pathways. XP treatment significantly reduced the bladder index, improved urine behavior and urodynamic parameters, decreased the neurotransmitters in urine, and reduced the thickness of the bladder wall and collagen ratio. These results indicate that XP can alleviate OAB symptoms and improve the bladder structure. In vivo/vitro experiments further demonstrated that XP can inhibit targets, such as muscarinic acetylcholine receptor 2, and participate in cholinergic synapses to further regulate the parasympathetic nervous system. It can also reduce the overexpression of Ca2+ caused by agonists, inhibit targets such as transient receptor potential vanilloid type 1, and participate in calcium signaling pathways to maintain Ca2+ homeostasis.
Conclusion
These results suggest that XP inhibited bladder overactivity by maintaining Ca2+ homeostasis and regulating the parasympathetic nervous system.
7.Antibiotic resistance in Helicobacter pylori among children and adolescents in East Asia: A systematic review and meta-analysis
Yuhang ZHOU ; Yanli ZHANG ; Shiyu DU
Chinese Medical Journal 2024;137(16):1926-1938
Background::In East Asia, Helicobacter pylori ( H. pylori) infection and related diseases are common, primarily during childhood and adolescence. The rates of primary antibiotic resistance in H. pylori among East Asian children and adolescents have not been extensively explored; few relevant systematic reviews or meta-analyses have been conducted. We evaluated the rates of antibiotic resistance in H. pylori among East Asian children and adolescents, with the goal of facilitating individualized treatment recommendations. Methods::We searched PubMed, Embase, and the Cochrane Library for studies in any language published up to February 2023 that explored antibiotic resistance in H. pylori among East Asian children and adolescents. We used MeSH and non-MeSH terms related to the topic, including terms related to children, adolescents, antibiotic resistance, H. pylori, and nations or regions. Additionally, we reviewed the reference lists of relevant articles. Studies that matched our strict predefined eligibility criteria were included in the screening process. Using established assessment methods, we evaluated the quality of the included studies. Results::We identified 15 observational studies involving 4831 H. pylori isolates, all published between 2001 and 2022. There was substantial primary antibiotic resistance in H. pylori isolates from East Asian children and adolescents. The rates of primary resistance were 51% (95% confidence interval [CI]: 40–62%) for metronidazole; 37% (95% CI: 20–53%) for clarithromycin; 19% (95% CI: 11–28%) for levofloxacin; and less than 3% each for amoxicillin, tetracycline, and furazolidone. Subgroup analysis revealed a prominent increase in metronidazole resistance over time. Clarithromycin and levofloxacin resistance rates fluctuated between 2005 and 2015, then remained stable; other antibiotic resistance rates were generally stable. Metronidazole, clarithromycin, and levofloxacin resistance rates were significantly higher in the Chinese mainland than in other East Asian regions. The rates of dual and multiple antibiotic resistance were 28% (95% CI: 21–36%) and 10% (95% CI: 7–14%), highlighting the potential for diverse resistance patterns. Conclusions::H. pylori isolates from East Asian children and adolescents exhibit high levels of metronidazole and clarithromycin resistance, particularly in the Chinese mainland. The non-negligible rates of dual and multiple resistance highlight the complexity of this problem. Registration::PROSPERO, No. CRD42023402510.
8.Effect and Mechanism of Water Extract of Mori Folium on Oxidative Stress in Adipose Tissue of T2DM Mice
Huilin ZHANG ; Yongcheng AN ; Changhao HE ; Yan HUANG ; Wanxin FU ; Menglu WANG ; Ziyi SHAN ; Yuhang DU ; Jiamei XIE ; Zhanhong JIA ; Baosheng ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(11):43-50
ObjectiveTo observe the effect of water extract of Mori Folium (MLE) on oxidative stress in adipose tissue of type 2 diabetes mellitus (T2DM) mice and explore its mechanism. MethodTwenty-four male db/db mice were randomly divided into model group, metformin group, low-dose MLE (MLE-L) group, and high-dose MLE (MLE-H) group according to their body weight and blood glucose, with six mice in each group, and other six C57BLKS/JGpt wild littermate mice were selected as normal group. The mice in the metformin group were given 200 mg·kg-1 metformin suspension, and the mice in the MLE-L and MLE-H groups were respectively given 2 g·kg-1 and 4 g·kg-1 MLE, while the mice in the normal group and model group were given the same dose of deionized water by daily gavage for eight weeks. Body weight, subcutaneous fat index, fasting blood glucose (FBG), and oral glucose tolerance level (OGTT) of the mice were detected, and serum superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) were measured. The expression levels of silent information regulator 1 (SIRT1) and NADPH oxidase type 4 (NOX4) protein in subcutaneous adipose tissue of the mice were detected by Western blot. ResultThe FBG level, OGTT, and subcutaneous fat index of T2DM mice were significantly decreased (P<0.05, P<0.01) after administration of MLE compared with the blank group. The contents of serum SOD and GSH were significantly increased, while the level of oxidative stress damage marker MDA was significantly decreased (P<0.05, P<0.01). The expression of SIRT1 protein in adipose tissue was significantly increased, while the expression of NOX4 protein was significantly decreased (P<0.05, P<0.01). ConclusionMLE can ameliorate T2DM by alleviating oxidative stress in adipose tissue of T2DM mice and reducing blood glucose.
9.Protective Effect and Mechanism of Mori Folium Extract on Kidney of db/db Diabetic Mice
Yan HUANG ; Huilin ZHANG ; Changhao HE ; Yongcheng AN ; Wanxin FU ; Menglu WANG ; Ziyi SHAN ; Yuhang DU ; Jiamei XIE ; Zhanhong JIA ; Baosheng ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(11):51-59
ObjectiveTo investigate the protective effects of Mori Folium extract (MLE) on the kidney of db/db diabetic mice and its mechanism. MethodTwenty-four male C57BLKS/JGpt-Leprdb/Leprdb (db/db) mice were randomly divided into model group, metformin group, low-dose group of MLE (MLE-L), and high-dose group of MLE (MLE-H) according to their fasting blood glucose (FBG), with six mice in each group, and other six C57BLKS/JGpt wild littermate (m/m) mice were selected as normal group. The mice in the drug administration groups were given corresponding drugs by gavage, and the mice in the normal group and model group were given the same dose of deionized water by gavage once a day for continuous eight weeks. Body weight, bilateral kidney weight, and FBG were measured, and an oral glucose tolerance test (OGTT) was performed. The pathological changes in the kidney tissue of mice were observed by hematoxylin-eosin (HE) and periodic acid-silver (PAS) staining, and serum creatinine (SCr) and blood urea nitrogen (BUN) levels were detected. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in serum and urinary microalbumin (U-mAlb) of mice. The expression levels of toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), and nuclear factor-kappa B p65 (NF-κB p65) protein in kidney tissue of mice were tested by Western blot. ResultCompared with the normal group, the body weight, absolute renal weight, FBG, and the area under the curve (AUC) of OGTT of mice in the model group were significantly increased (P<0.01), and the levels of SCr, BUN, and U-mAlb, as well as TNF-α and IL-6 in serum were significantly increased (P<0.01). The glomerular basement membrane in the kidney tissue of mice was thicker, with obvious inflammatory cell infiltration. The protein expression levels of TLR4, MyD88, and NF-κB p65 in the kidney tissue of mice were increased significantly (P<0.01). Compared with the model group, there was no statistical difference in the body weight of mice in each drug administration group. The absolute renal weight of mice in the MLE-H and metformin groups was significantly reduced (P<0.05, P<0.01). The FBG levels of mice in the metformin, MLE-L, and MLE-H groups started to decrease after treatment for four to eight weeks (P<0.05, P<0.01). The AUC of mice in the MLE-H and metformin groups was significantly decreased (P<0.01). The levels of SCr, BUN, and U-mAlb of mice in the MLE-H and metformin groups were significantly decreased (P<0.01), and those of SCr and U-mAlb of mice in the MLE-L group were significantly decreased (P<0.01). The levels of TNF-α and IL-6 in the serum of mice in the MLE-H and metformin groups were significantly decreased (P<0.01). The renal tissue pathology of mice in each drug administration group was improved to varying degrees, and the protein expression levels of TLR4, MyD88, and NF-κB p65 in the MLE-H group were decreased significantly (P<0.05, P<0.01). ConclusionMLE can improve the renal structure and function of db/db diabetic mice, and its mechanism may be related to the inhibition of the TLR4/MyD88/NF-κB signaling pathway.
10.Extraction Process and Mechanism of Active Ingredients of Mori Folium for Lowering Blood Glucose: A Review
Jiamei XIE ; Huilin ZHANG ; Yan HUANG ; Menglu WANG ; Yuhang DU ; Changhao HE ; Yongcheng AN ; Wanxin FU ; Ziyi SHAN ; Baosheng ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(11):60-69
Mori Folium, the dried leaves of Morus alba, is widely used in clinical practice for dispersing wind and heat, clearing the lung and moistening dryness, soothing the liver and improving vision, and cooling blood and stopping bleeding. It has been used to regulate blood glucose since ancient times, and modern studies have shown that the active components of Mori Folium for lowering blood glucose mainly include flavonoids, alkaloids, polysaccharides, and phenols. These components are mainly extracted by solvents such as water and alcohols with the assistance of ultrasound and microwave. In addition, new extraction methods are emerging, such as CO2 supercritical fluid extraction, enzymatic hydrolysis, and cloud point extraction. Mori Folium lowers blood glucose via multiple components, pathways, and targets. Specifically, it can improve glucose and lipid metabolism, protect pancreatic β cells, and alleviate insulin resistance to reduce the damage caused by hyperglycemia and restore normal physiological functions. Although a large number of studies have been carried out on diabetes, the causes and radical treatment methods remain to be explored, and diabetes is still a major disease that endangers human health and needs to be solved urgently. The articles about extraction process and mechanism of active components in Mori Folium for lowering blood glucose were retrieved from the China National Knowledge Infrastructure (CNKI), Web of Science, and PubMed. We analyzed the applicable extraction methods for the blood glucose-lowering components such as flavonoids, polysaccharides, and alkaloids in Mori Folium, and compared the conventional and emerging methods. Furthermore, we summarized our research achievements in the extraction of active components from Mori Folium and the blood glucose-lowering effect and mechanisms. This review aims to provide theoretical support for the optimization of the extraction process, the research on the blood glucose-lowering components and mechanism, and the development of new drugs and clinical application of Mori Folium.


Result Analysis
Print
Save
E-mail