1.Exploring the Correlation between Pyroptosis and Immune Microenvironment Dysregulation in Rheumatoid Arthritis from the Perspective of "Ying Decline and Wei Attack"
Yancun LI ; Shu ZHU ; Yuhan WANG ; Yuan QU ; Yuan LIU ; Ping JIANG
Journal of Traditional Chinese Medicine 2025;66(5):464-467
As a complex autoimmune disease, rheumatoid arthritis (RA) involves immune microenvironment dysregulation resulting from excessive activation of pyroptosis, which is a crucial factor in disease progression. Based on the theory of ying-wei in traditional Chinese medicine, "ying decline and wei attack" is considered the fundamental pathogenesis of RA. Pyroptosis serves as a microscopic manifestation of this concept, suggesting a potential correlation between "ying decline and wei attack" and pyroptosis nd immune microenvironment dysregulation in RA. Accordingly, treatment principles based on this theory are proposed: in the early stage of the disease, boosting wei to consolidate the exterior, and regulating ying to dispel pathogens; in the middle and late stages, harmonizing ying to remove stagnation, and nourishing its transformational source.
2.The Effects of Qufeng Tongqiao Cough-Relieving Decoction (祛风通窍止咳方) on Cough Sensitivity,TRPV4 in Lung and Nasal Mucosal Tissues,and Neurogenic Inflammation in a Guinea Pig Model of Upper Airway Cough Syndrome
Jingshu LUO ; Jianling MA ; Liqing SHI ; Kun JI ; Song LIU ; Yuhan FAN ; Xianli LI ; Zhaodi GUO
Journal of Traditional Chinese Medicine 2025;66(5):518-525
ObjectiveTo investigate the potential mechanism of action of the Qufeng Tongqiao Cough-relieving Decoction (祛风通窍止咳方, QTCD) in the treatment of upper airway cough syndrome (UACS). MethodsTwenty-four guinea pigs were randomly divided into blank group, model group, traditional Chinese medicine (TCM) group, and inhibitor group, with six guinea pigs in each group. Except for the blank group, guinea pigs were sensitized with ovalbumin and aluminum hydroxide via intraperitoneal injection, followed by ovalbumin nasal drops combined with smoke exposure to establish the UACS model. After modeling, the TCM group was administered QTCD 0.9 g/(100 g·d) by gavage, the inhibitor group received the transient receptor potential vanilloid receptor 4 (TRPV4) inhibitor GSK2193874 1 mmol/L, 5 min by nebulisation, and the blank group and model group were given 2 ml/(100 g·d) normal saline by gavage once daily. After 7 days of treatment, a cough provocation test was performed using 0.4 mol/L citric acid. The levels of IgE in serum and inflammatory cytokines, including interleukin-6 (IL-6), interleukin-8 (IL-8) in serum, bronchoalveolar lavage fluid (BALF), and nasal lavage fluid (NLF) were detected by enzyme-linked immunosorbent assay (ELISA). Histopathological changes in lung and nasal mucosal tissues were observed by hematoxylin-eosin (HE) staining. Immunohistochemistry was used to detect the protein levels of TRPV4, substance P (SP), and calcitonin gene-related peptide (CGRP) in lung and nasal mucosal tissues. Real-time polymerase chain reaction (Real-time PCR) was used to detect the mRNA expression of TRPV4, SP, and CGRP in lung tissues. ResultsHE staining showed significant structural damage and infiltration of inflammatory cells in the lung and nasal mucosal tissues in the model group, while the TCM group and inhibitor group showed improved pathological changes. Compared with the blank group, the model group showed increased cough frequency, serum IgE level, and IL-6 and IL-8 levels in serum, BALF, and NLF. The protein levels of TRPV4, SP, and CGRP in lung and nasal mucosal tissues and their mRNA expression were elevated (P<0.05 or P<0.01). Compared with the model group, the TCM group and inhibitor group showed reduced cough frequency, serum IgE level, and TRPV4 and SP mRNA expression in lung tissues. The TCM group showed reduced IL-6 and IL-8 levels in serum, BALF, and NLF, and reduced TRPV4 and CGRP protein levels in lung and nasal mucosal tissues. The inhibitor group showed reduced IL-6 and IL-8 levels in serum, BALF, and NLF, reduced IL-6 in BALF, reduced IL-8 in NLF, and decreased TRPV4, SP, and CGRP protein levels in lung tissues and SP and CGRP protein levels in nasal mucosal tissues (P<0.05 or P<0.01). Compared with the TCM group, the inhibitor group had increased serum IgE, IL-6, and IL-8 levels, increased IL-6 level in BALF, and increased IL-8 levle in NLF, but decreased SP protein level in lung tissues and increased TRPV4 and SP mRNA expression in lung tissues (P<0.01). ConclusionQTCD effectively reduces cough frequency in the UACS guinea pig model. Its mechanism may involve inhibiting the activation of the TRPV4 pathway, improving airway neurogenic inflammation, alleviating inflammatory responses, and reducing cough hypersensitivity.
3.Whole gene sequence analysis of an echovirus 11 isolate from Kunming, Yunnan Province in 2019
Chinese Journal of Biologicals 2025;38(01):48-52
Objective To sequence the whole genome and analyze the genetic characteristics of an echovirus 11(E-11)strain isolated from stool samples of patients with hand, foot and mouth disease(HFMD) in Kunming, Yunnan Province in2019, so as to provide a reference for the prevention and control of E-11.Methods The virus was isolated using Vero cells,the RNA from cytopathic products was extracted for RT-PCR and sequenced, and the whole genome sequence was analyzed by software such as MEGA 7.0, Geneious 10.0 and Simplot 3.5.1.Results The 19V30322/YN/CHN/2019 isolate was sequenced and determined to be E-11, which belongs to the D5 subtype of the same genotype D as the E-11 epidemic strain in Guangdong and Hubei, China in recent years, with a full length of 7 434 nt and encoding a polyprotein of 2 195 amino acids. 19V30322 showed 81. 8%-98. 3% nucleotide identity and 94. 5%-99. 3% amino acid similarity with the domestic isolate E-11, and recombined with Coxsackievirus A10, E-6, Coxsackievirus B4 and Coxsackievirus B5 during the evolutionary process.Conclusion The 19V3/YN/CHN/2019 isolate is the D5 subtype of E-11 and is a recombinant strain.
4.Mechanism of joint injection of Caulophyllum robustum Maxim in the treatment of rheumatoid arthritis
Shaowa LYU ; Yunyu WU ; Quanli LIU ; Yuhan REN ; Yuyan GUO ; Haixue KUANG
China Pharmacy 2025;36(8):926-931
OBJECTIVE To explore the mechanism of joint injection of Caulophyllum robustum Maxim in the treatment of rheumatoid arthritis (RA). METHODS The targets of main saponins in C. robustum Maxim were obtained from Swiss Target Prediction, and the RA treatment targets collected from the GeneCards and OMIM database were intercrossed to establish an interaction network based on network pharmacology. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. RA model was established by injecting complete Freund’s adjuvant into the back of rabbits for verification. The arthritis index score, knee diameter and pain threshold of rabbits were compared. Pathological examination of rabbit synovial tissue was carried out. The levels of tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β) and IL-6 in rabbit serum and synovial fluid were detected. The phosphorylation levels of tyrosine protein Janus kinase 2 (JAK2) and signal transducer and activator of transcription 3 (STAT3) proteins in rabbit synovium were detected. RESULTS Network pharmacology identified 143 intersection targets between the drug and RA. After the construction of the “drug-component-target” network, the core components of the network were echinocystic acid, oleanolic acid, hederagenin, cauloside A and cauloside C, etc. Additionally, the top 10 core targets of PPI network were SRC, STAT3, MAPK1, EGFR, PIK3CA, MAPK3, GRB2, JUN, PTPN11 and JAK2. The results of KEGG pathway analysis showed that the JAK/STAT signaling pathway was mainly involved in the treatment of RA by joint injection of C. robustum Maxim. Results of validation test showed that compared with model group, joint injection of C. robustum Maxim could reduce the swelling of rabbit knee joint, relieve the hyperplasia of synovial layer, reduce the hyperplasia of lower connective tissue, and reduce the number of inflammatory cells and capillaries. The arthritis index score (excluding low-dose group of C. robustum Maxim), knee diameter, the levels of TNF-α, IL-1β and IL-6 in serum and synovial fluid, and the protein phosphorylation levels of JAK2 and STAT3 were decreased significantly (P<0.05 of P<0.01), while the pain threshold were reduced significantly (P<0.01). CONCLUSIONS The core components that may alleviate the inflammatory response of RA in joint injection of C. robustum Maxim could include echinocystic acid, oleanolic acid, hederagenin, cauloside A, and cauloside C. Its mechanism may be related to the inhibition of JAK/STAT signaling pathway and the reduction of inflammatory responses.
5.Kidney Gastrin/CCKBR Attenuates Type 2 Diabetes Mellitus by Inhibiting SGLT2-Mediated Glucose Reabsorption through Erk/NF-κB Signaling Pathway
Xue ZHANG ; Yuhan ZHANG ; Yang SHI ; Dou SHI ; Min NIU ; Xue LIU ; Xing LIU ; Zhiwei YANG ; Xianxian WU
Diabetes & Metabolism Journal 2025;49(2):194-209
Background:
Both sodium-glucose cotransporters (SGLTs) and Na+/H+ exchangers (NHEs) rely on a favorable Na-electrochemical gradient. Gastrin, through the cholecystokinin B receptor (CCKBR), can induce natriuresis and diuresis by inhibiting renal NHEs activity. The present study aims to unveil the role of renal CCKBR in diabetes through SGLT2-mediated glucose reabsorption.
Methods:
Renal tubule-specific Cckbr-knockout (CckbrCKO) mice and wild-type (WT) mice were utilized to investigate the effect of renal CCKBR on SGLT2 and systemic glucose homeostasis under normal diet, high-fat diet (HFD), and HFD with a subsequent injection of a low dose of streptozotocin. The regulation of SGLT2 expression by gastrin/CCKBR and the underlying mechanism was explored using human kidney (HK)-2 cells.
Results:
CCKBR was downregulated in kidneys of diabetic mice. Compared with WT mice, CckbrCKO mice exhibited a greater susceptibility to obesity and diabetes when subjected to HFD.
6.Kidney Gastrin/CCKBR Attenuates Type 2 Diabetes Mellitus by Inhibiting SGLT2-Mediated Glucose Reabsorption through Erk/NF-κB Signaling Pathway
Xue ZHANG ; Yuhan ZHANG ; Yang SHI ; Dou SHI ; Min NIU ; Xue LIU ; Xing LIU ; Zhiwei YANG ; Xianxian WU
Diabetes & Metabolism Journal 2025;49(2):194-209
Background:
Both sodium-glucose cotransporters (SGLTs) and Na+/H+ exchangers (NHEs) rely on a favorable Na-electrochemical gradient. Gastrin, through the cholecystokinin B receptor (CCKBR), can induce natriuresis and diuresis by inhibiting renal NHEs activity. The present study aims to unveil the role of renal CCKBR in diabetes through SGLT2-mediated glucose reabsorption.
Methods:
Renal tubule-specific Cckbr-knockout (CckbrCKO) mice and wild-type (WT) mice were utilized to investigate the effect of renal CCKBR on SGLT2 and systemic glucose homeostasis under normal diet, high-fat diet (HFD), and HFD with a subsequent injection of a low dose of streptozotocin. The regulation of SGLT2 expression by gastrin/CCKBR and the underlying mechanism was explored using human kidney (HK)-2 cells.
Results:
CCKBR was downregulated in kidneys of diabetic mice. Compared with WT mice, CckbrCKO mice exhibited a greater susceptibility to obesity and diabetes when subjected to HFD.
7.Kidney Gastrin/CCKBR Attenuates Type 2 Diabetes Mellitus by Inhibiting SGLT2-Mediated Glucose Reabsorption through Erk/NF-κB Signaling Pathway
Xue ZHANG ; Yuhan ZHANG ; Yang SHI ; Dou SHI ; Min NIU ; Xue LIU ; Xing LIU ; Zhiwei YANG ; Xianxian WU
Diabetes & Metabolism Journal 2025;49(2):194-209
Background:
Both sodium-glucose cotransporters (SGLTs) and Na+/H+ exchangers (NHEs) rely on a favorable Na-electrochemical gradient. Gastrin, through the cholecystokinin B receptor (CCKBR), can induce natriuresis and diuresis by inhibiting renal NHEs activity. The present study aims to unveil the role of renal CCKBR in diabetes through SGLT2-mediated glucose reabsorption.
Methods:
Renal tubule-specific Cckbr-knockout (CckbrCKO) mice and wild-type (WT) mice were utilized to investigate the effect of renal CCKBR on SGLT2 and systemic glucose homeostasis under normal diet, high-fat diet (HFD), and HFD with a subsequent injection of a low dose of streptozotocin. The regulation of SGLT2 expression by gastrin/CCKBR and the underlying mechanism was explored using human kidney (HK)-2 cells.
Results:
CCKBR was downregulated in kidneys of diabetic mice. Compared with WT mice, CckbrCKO mice exhibited a greater susceptibility to obesity and diabetes when subjected to HFD.
8.Kidney Gastrin/CCKBR Attenuates Type 2 Diabetes Mellitus by Inhibiting SGLT2-Mediated Glucose Reabsorption through Erk/NF-κB Signaling Pathway
Xue ZHANG ; Yuhan ZHANG ; Yang SHI ; Dou SHI ; Min NIU ; Xue LIU ; Xing LIU ; Zhiwei YANG ; Xianxian WU
Diabetes & Metabolism Journal 2025;49(2):194-209
Background:
Both sodium-glucose cotransporters (SGLTs) and Na+/H+ exchangers (NHEs) rely on a favorable Na-electrochemical gradient. Gastrin, through the cholecystokinin B receptor (CCKBR), can induce natriuresis and diuresis by inhibiting renal NHEs activity. The present study aims to unveil the role of renal CCKBR in diabetes through SGLT2-mediated glucose reabsorption.
Methods:
Renal tubule-specific Cckbr-knockout (CckbrCKO) mice and wild-type (WT) mice were utilized to investigate the effect of renal CCKBR on SGLT2 and systemic glucose homeostasis under normal diet, high-fat diet (HFD), and HFD with a subsequent injection of a low dose of streptozotocin. The regulation of SGLT2 expression by gastrin/CCKBR and the underlying mechanism was explored using human kidney (HK)-2 cells.
Results:
CCKBR was downregulated in kidneys of diabetic mice. Compared with WT mice, CckbrCKO mice exhibited a greater susceptibility to obesity and diabetes when subjected to HFD.
9.Comparison of protocols for constructing animal models of early traumatic knee osteoarthritis
Yuhan LIU ; Yujiang FAN ; Qiguang WANG
Chinese Journal of Tissue Engineering Research 2024;28(4):542-549
BACKGROUND:Current osteoarthritis modeling methods include anterior cruciate ligament transection(ACLT)and ACLT combined with medial meniscal anterior horn resection.ACLT requires excessive postoperative exercise,which is time and labor-intensive.Complete removal of anterior horn of the medial meniscus can cause collateral damage and increase variability in modeling outcomes,requiring higher surgical skills from the surgeon. OBJECTIVE:To modify and simplify the traditional method to create animal osteoarthritis model and compare osteoarthritis symptoms of different modeling methods under a low-load exercise environment. METHODS:Forty-eight Sprague-Dawley rats were randomly assigned in four groups(n=12 per group):sham operation(complete exposure of the knee cavity of the left hind limb followed by suturing the joint cavity and skin),ACLT,ACLT+anterior horn resection(removal of the anterior horn of the medial meniscus)and ACLT+anterior horn tear(anterior horn tear of the medial meniscus).At 4 weeks after modeling,the rats were euthanized and their knee specimens were collected for gross observation,X-ray and CT scans,pathological observation,and PCR detection. RESULTS AND CONCLUSION:Gross observation:Mild meniscal wear was observed in the ACLT group.In the ACLT+anterior horn tear group,severe wear of the lateral condyle articular surface,mild wear of the medial condyle articular surface,severe meniscal wear,and full wear of the medial meniscus were observed.The ACLT+resection group showed severe wear of the lateral condyle articular surface,mild wear of the medial condyle articular surface,absence of the anterior horn of the medial meniscus,and meniscus wear area>50%.Imaging examinations showed no significant difference among the four groups.However,the anterior tibial translocation sign was observed in the three operation groups and the anterior horn of the medial meniscus was missing in the ACLT+anterior horn resection group.Histopathological section observation:Hematoxylin-eosin,toluidine blue,and Sirius red staining showed smooth joint surfaces in the sham operation group and ACLT group;cartilage damage and matrix degradation were evident in the ACLT+anterior horn tear and ACLT+anterior horn transection groups,with less cartilage damage and matrix degradation in the ACLT+anterior horn tear group.PCR results showed higher mRNA expressions of interleukin 1β,interleukin 6,interleukin 8,tumor necrosis factor α,matrix metalloproteinase 1 and matrix metalloproteinase 3 and lower mRNA expressions of aggrecan in the ACLT+anterior horn tear group and ACLT+anterior horn resection group than in the sham operation group and ACLT group(P<0.05).The mRNA expressions of interleukin 6,matrix metalloproteinase 1,and matrix metalloproteinase 3 were higher in the ACLT + anterior horn resection group than in the ACLT +anterior horn tear group(P<0.05).To conclude,ACLT alone is less likely to induce osteoarthritis with obvious cartilage wear.ACLT combined with anterior horn resection or tear of the medial meniscus can induce obvious symptoms of osteoarthritis and achieve similar modeling effects.
10.Discussion on the pathogenesis of pan-vascular diseases based on the theory of"stagnation due to qi deficiency"
Sixiang ZHANG ; Zheng LIU ; Youmin ZHAO ; Yuhan LI ; Yixuan LI ; Yingrui WANG ; Qinyu ZHANG
Journal of Beijing University of Traditional Chinese Medicine 2024;47(7):983-988
Pan-vascular medicine is an emerging discipline focusing on atherosclerotic diseases,with the concept of multidisciplinary integration,emphasizing on exploring the mechanism of disease development from the whole of the organism's structure and function.At present,the basic mechanism system of pan-vascular diseases has yet to be perfected.The pan-vascular concept is highly compatible with the idea of Chinese medicine that focuses on the overall view.Deficiency of all qi is the root cause of pan-vascular diseases,while phlegm,blood stasis,and water-dampness and other tangible evils stagnate in the veins and channels as the symptoms of the disease,therefore,the disease mechanism can be highly summarized as"stagnation due to qi deficiency".Deficiency leads to the stagnation,blocking the veins and channels,and the deficiency worsens due to the stagnation and then damages the veins and channels,thus,it develops into a disease.Based on the theory of"stagnation due to qi deficiency",this paper takes endothelial cell dysfunction as the entry point of pan-vascular diseases,and considers that low endothelial cell immunity is the initiating factor of pan-vascular diseases,and that the widespread persistence of microinflammatory state is the key pathology to pan-vascular diseases.


Result Analysis
Print
Save
E-mail