1.Adaptive evolution of microorganisms based on industrial environmental perturbations.
Xiaoling TANG ; Jingxiang CHEN ; Zhiqiang LIU ; Yuguo ZHENG
Chinese Journal of Biotechnology 2023;39(3):993-1008
The development of synthetic biology has greatly promoted the construction of microbial cell factories, providing an important strategy for green and efficient chemical production. However, the bottleneck of poor tolerance to harsh industrial environments has become the key factor hampering the productivity of microbial cells. Adaptive evolution is an important method to domesticate microorganisms for a certain period by applying targeted selection pressure to obtain desired phenotypic or physiological properties that are adapted to a specific environment. Recently, with the development of technologies such as microfluidics, biosensors, and omics analysis, adaptive evolution has laid the foundation for efficient productivity of microbial cell factories. Herein, we discuss the key technologies of adaptive evolution and their important applications in improvement of environmental tolerance and production efficiency of microbial cell factories. Moreover, we looked forward to the prospects of adaptive evolution to realize industrial production by microbial cell factories.
Metabolic Engineering
;
Industrial Microbiology/methods*
;
Synthetic Biology
;
Environment
;
Industry
2.Microbial production of S-adenosyl-l-methionine: a review.
Meijing LI ; Zheyan MI ; Jinhao WANG ; Zhongce HU ; Haibin QIN ; Yuanshan WANG ; Yuguo ZHENG
Chinese Journal of Biotechnology 2023;39(6):2248-2264
S-adenosyl-l-methionine (SAM) is ubiquitous in living organisms and plays important roles in transmethylation, transsulfuration and transamination in organisms. Due to its important physiological functions, production of SAM has attracted increasing attentions. Currently, researches on SAM production mainly focus on microbial fermentation, which is more cost-effective than that of the chemical synthesis and the enzyme catalysis, thus easier to achieve commercial production. With the rapid growth in SAM demand, interests in improving SAM production by developing SAM hyper-producing microorganisms aroused. The main strategies for improving SAM productivity of microorganisms include conventional breeding and metabolic engineering. This review summarizes the recent research progress in improving microbial SAM productivity to facilitate further improving SAM productivity. The bottlenecks in SAM biosynthesis and the solutions were also addressed.
S-Adenosylmethionine/metabolism*
;
Plant Breeding
;
Fermentation
;
Metabolic Engineering
3.Biosynthesis of immunosuppressant tacrolimus: a review.
Liqun JIN ; Di LU ; Minglin XING ; Xianwen WANG ; Zhiqiang LIU ; Yuguo ZHENG
Chinese Journal of Biotechnology 2023;39(8):3095-3110
Tacrolimus (FK506) is a 23-membered macrolide with immunosuppressant activity that is widely used clinically for treating the rejection after organ transplantation. The research on tacrolimus production was mainly focused on biosynthesis methods, within which there are still some bottlenecks. This review summarizes the progress made in tacrolimus biosynthesis via modification of metabolic pathways and control of fermentation process, with the hope to address the technical bottlenecks for tacrolimus biosynthesis and improve tacrolimus production by fermentation engineering and metabolic engineering.
Tacrolimus
;
Immunosuppressive Agents
;
Fermentation
;
Macrolides
;
Anti-Bacterial Agents
4.Efficient synthesis of L-methionine by engineering the one carbon module of Escherichia coli.
Bo ZHANG ; Ying WANG ; Kun NIU ; Zhiqiang LIU ; Yuguo ZHENG
Chinese Journal of Biotechnology 2023;39(8):3302-3317
L-methionine, also known as L-aminomethane, is one of the eight essential amino acids required by the human body and has important applications in the fields of feed, medicine, and food. In this study, an L-methionine high-yielding strain was constructed using a modular metabolic engineering strategy based on the M2 strain (Escherichia coli W3110 ΔIJAHFEBC/PAM) previously constructed in our laboratory. Firstly, the production of one-carbon module methyl donors was enhanced by overexpression of methylenetetrahydrofolate reductase (methylenetetrahydrofolate reductase, MetF) and screening of hydroxymethyltransferase (GlyA) from different sources, optimizing the one-carbon module. Subsequently, cysteamine lyase (hydroxymethyltransferase, MalY) and cysteine internal transporter gene (fliY) were overexpressed to improve the supply of L-homocysteine and L-cysteine, two precursors of the one-carbon module. The production of L-methionine in shake flask fermentation was increased from 2.8 g/L to 4.05 g/L, and up to 18.26 g/L in a 5 L fermenter. The results indicate that the one carbon module has a significant impact on the biosynthesis of L-methionine, and efficient biosynthesis of L-methionine can be achieved through optimizing the one carbon module. This study may facilitate further improvement of microbial fermentation production of L-methionine.
Humans
;
Methionine
;
Methylenetetrahydrofolate Reductase (NADPH2)
;
Carbon
;
Cysteine
;
Escherichia coli/genetics*
;
Hydroxymethyl and Formyl Transferases
;
Carrier Proteins
;
Escherichia coli Proteins
5.Recent advances in poly phosphate kinase (PPK) and the construction of PPK-mediated ATP regeneration system.
Feng CHENG ; Huan LI ; Kexin LI ; Haiyun LIU ; Qi SHEN ; Yaping XUE ; Yuguo ZHENG
Chinese Journal of Biotechnology 2023;39(11):4413-4427
Adenosine triphosphate (ATP) regeneration systems are essential for efficient biocatalytic phosphoryl transfer reactions. Polyphosphate kinase (PPK) is a versatile enzyme that can transfer phosphate groups among adenosine monophosphate (AMP), adenosine diphosphate (ADP), ATP, and polyphosphate (Poly P). Utilization of PPK is an attractive solution to address the problem of ATP regeneration due to its ability to use a variety of inexpensive and stable Poly P salts as phosphate group donors. This review comprehensively summarizes the structural characteristics and catalytic mechanisms of different types of PPKs, as well as the variations in enzyme activity, catalytic efficiency, stability, and coenzyme preference observed in PPKs from different sources. Moreover, recent advances in PPK-mediated ATP regeneration systems and protein engineering of wild-type PPK are summarized.
Adenosine Triphosphate/metabolism*
;
Adenosine Monophosphate
;
Polyphosphates/metabolism*
;
Catalysis
;
Regeneration
6.Advances in the biosynthesis of L-homoserine and its derivatives by metabolic engineering of Escherichia coli.
Kun NIU ; Liping GAO ; Lirong GE ; Zhiqiang LIU ; Yuguo ZHENG
Chinese Journal of Biotechnology 2022;38(12):4385-4402
L-homoserine and its derivatives (O-succinyl-L-homoserine and O-acetyl-L-homoserine) are precursors for the biosynthesis of L-methionine, and various C4 compounds (isobutanol, γ-butyrolactone, 1, 4-butanediol, 2, 4-dihydroxybutyric acid) and L-phosphinothricin. Therefore, the fermentative production of L-homoserine and its derivatives became the research hotspot in recent years. However, the low fermentation yield and conversion rate, and the unclear regulation mechanism for the biosynthesis of L-homoserine and its derivatives, hamper the development of an efficient production process for L-homoserine and its derivatives. This review summarized the advances in the biosynthesis of L-homoserine and its derivatives by metabolic engineering of Escherichia coli from the aspects of substrate uptake, redirection of carbon flow at the key nodes, recycle of NADPH and export of target products. This review may facilitate subsequent metabolic engineering and biotechnological production of L-homoserine and its derivatives.
Escherichia coli/metabolism*
;
Metabolic Engineering
;
Homoserine/metabolism*
;
Escherichia coli Proteins/metabolism*
;
Fermentation
7.Construction of an l-cysteine hyper-producing strain of Escherichia coli based on a balanced carbon and sulfur module strategy.
Bo ZHANG ; Kai CHEN ; Hui YANG ; Zidan WU ; Zhiqiang LIU ; Yuguo ZHENG
Chinese Journal of Biotechnology 2022;38(12):4567-4586
l-cysteine is an important sulfur-containing α-amino acid. It exhibits multiple physiological functions with diverse applications in pharmaceutical cosmetics and food industry. Here, a strategy of coordinated gene expression between carbon and sulfur modules in Escherichia coli was proposed and conducted for the production of l-cysteine. Initially, the titer of l-cysteine was improved to (0.38±0.02) g/L from zero by enhancing the biosynthesis of l-serine module (serAf, serB and serCCg) and overexpression of CysB. Then, promotion of l-cysteine transporter, increased assimilation of sulfur, reduction or deletion of l-cysteine and l-serine degradation pathway and enhanced expression of cysEf (encoding serine acetyltransferase) and cysBSt (encoding transcriptional dual regulator CysB) were achieved, resulting in an improved l-cysteine titer (3.82±0.01) g/L. Subsequently, expressions of cysM, nrdH, cysK and cysIJ genes that were involved in sulfur module were regulated synergistically with carbon module combined with utilization of sulfate and thiosulfate, resulting in a strain producing (4.17±0.07) g/L l-cysteine in flask shake and (11.94±0.1) g/L l-cysteine in 2 L bioreactor. Our results indicated that efficient biosynthesis of l-cysteine could be achieved by a proportional supply of sulfur and carbon in vivo. This study would facilitate the commercial bioproduction of l-cysteine.
Escherichia coli/metabolism*
;
Cysteine/metabolism*
;
Bioreactors
;
Sulfur/metabolism*
;
Serine/metabolism*
8.Development and practice of national first-class undergraduate course "bioengineering equipment".
Yuanshan WANG ; Kun NIU ; Feng CHENG ; Zheming WU ; Jianmiao XU ; Xiaofei SONG ; Yuguo ZHENG
Chinese Journal of Biotechnology 2022;38(12):4797-4807
As a strategic emerging industry of China, the biotechnology industry develops rapidly in recent years, which significantly increased the demand for creative and capable talents. As a core curriculum of bioengineering specialty, biotechnology equipment plays an important role in fostering such talents. To address the problems in biotechnology equipment course teaching such as limited equipment availability, limited engineering practice, and lack of learning motivations, curriculum reform and optimization were performed based on curriculum resource development, virtual reality-physical combined engineering training, and boosting learning motivations. The optimized teaching contents focus on fostering morality, intelligence, and creative practice abilities by connecting new requirements of social development, introducing new progress in biotechnology research, as well as new practices in research and development (R & D). Measures such as teaching methods innovation, assessment and evaluation methods optimization, cutting-edge R & D progress, diverse resources integration, and online-offline combined teaching, were developed to boost the learning motivation and foster the innovation competence of students. By above exploration and practice, the practice and innovation competence of students were significantly enhanced.
Humans
;
Students
;
Learning
;
Curriculum
;
Bioengineering
;
Biomedical Engineering
9.Formate dehydrogenase and its application in biomanufacturing of chiral chemicals.
Feng CHENG ; Lan WEI ; Chengjiao WANG ; Yaping XUE ; Yuguo ZHENG
Chinese Journal of Biotechnology 2022;38(2):632-649
The redox biosynthesis system has important applications in green biomanufacturing of chiral compounds. Formate dehydrogenase (FDH) catalyzes the oxidation of formate into carbon dioxide, which is associated with the reduction of NAD(P)+ into NAD(P)H. Due to this property, FDH is used as a crucial enzyme in the redox biosynthesis system for cofactor regeneration. Nevertheless, the application of natural FDH in industrial production is hampered by low catalytic efficiency, poor stability, and inefficient coenzyme utilization. This review summarized the structural characteristics and catalytic mechanism of FDH, as well as the advances in protein engineering of FDHs toward improved enzyme activity, catalytic efficiency, stability and coenzyme preference. The applications of using FDH as a coenzyme regeneration system for green biomanufacturing of chiral compounds were summarized.
Catalysis
;
Coenzymes/metabolism*
;
Formate Dehydrogenases/metabolism*
;
NAD/metabolism*
;
Protein Engineering
10.Construction and application of microbial cell factories for unnatural amino acids.
Xiaoling TANG ; Huimin ZHANG ; Zhiqiang LIU ; Yuguo ZHENG
Chinese Journal of Biotechnology 2022;38(4):1295-1306
Unnatural amino acids are widely used in medicine, pesticide, material, and other industries and the green and efficient synthesis has attracted a lot of attention. In recent years, with the rapid development of synthetic biology, microbial cell factories have become a promising means for biosynthesis of unnatural amino acids. This study reviewed the construction and application of microbial cell factories for unnatural amino acid, including the synthetic pathway reconstruction, design/modification of key enzymes and their coordinated regulation with precursors, blocking of competitive alternative pathways, and construction of cofactor circulation systems. Meanwhile, on the basis of the new principles for designing the microbial cell factories, new biosynthetic pathways adapted to cells and the production environment, as well as new biomanufacturing system established based on cell adaptive evolution and intelligent fermentation regulation, we looked forward to the further construction and application of microbial cell factories for industrial bio-production.
Amino Acids/genetics*
;
Biosynthetic Pathways
;
Fermentation
;
Metabolic Engineering
;
Synthetic Biology

Result Analysis
Print
Save
E-mail