1.Research Progress of Fuzheng Jiedu Huayu Method in Reducing Toxicity and Enhancing Efficacy of Immunotherapy
Yufan CHEN ; Sicong LI ; Yiyuan CUI ; Li FENG
Cancer Research on Prevention and Treatment 2025;52(1):11-18
Immunotherapy, including immune checkpoint inhibitors, tumor vaccine therapy, oncolytic virotherapy, and adoptive cell therapy, has made remarkably breakthroughs in the field of oncology. Immune checkpoint inhibitors, which block programmed death receptor 1 or programmed death ligand 1, have been included in the first-line clinical treatment for advanced solid tumors, such as non-small cell lung cancer and malignant melanoma. However, primary or secondary drug resistance in tumors severely limits the survival benefits for patients. Immune-related adverse reactions, such as pneumonia, hypothyroidism, hypophysitis, and myocarditis, also greatly affect the quality of life of patients. Fuzheng Jiedu Huayu is an important concept guiding the prevention and treatment of tumors with traditional Chinese medicine (TCM). It is also a curative principle and therapeutic TCM method to reduce the toxicity and enhance the efficacy of immunotherapy. This article summarizes the research progress of immunotherapy and discusses how TCM reduces the toxicity and enhances the efficacy of immunotherapy, hoping to provide a reference for the integrated treatment of tumors with TCM and immunotherapy.
2.Research progress on platelets in glioma.
Mingrong ZUO ; Tengfei LI ; Zhihao WANG ; Yufan XIANG ; Siliang CHEN ; Yanhui LIU
Chinese Medical Journal 2025;138(1):28-37
Gliomas are the most common primary neuroepithelial tumors of the central nervous system in adults, of which glioblastoma is the deadliest subtype. Apart from the intrinsically indestructible characteristics of glioma (stem) cells, accumulating evidence suggests that the tumor microenvironment also plays a vital role in the refractoriness of glioblastoma. The primary functions of platelets are to stop bleeding and regulate thrombosis under physiological conditions. Furthermore, platelets are also active elements that participate in a variety of processes of tumor development, including tumor growth, invasion, and chemoresistance. Glioma cells recruit and activate resting platelets to become tumor-educated platelets (TEPs), which in turn can promote the proliferation, invasion, stemness, and chemoresistance of glioma cells. TEPs can be used to obtain genetic information about gliomas, which is helpful for early diagnosis and monitoring of therapeutic effects. Platelet membranes are intriguing biomimetic materials for developing efficacious drug carriers to enhance antiglioma activity. Herein, we review the recent research referring to the contribution of platelets to the malignant characteristics of gliomas and focusing on the molecular mechanisms mediating the interaction between TEPs and glioma (stem) cells, as well as present the challenges and opportunities in targeting platelets for glioma therapy.
Humans
;
Glioma/metabolism*
;
Blood Platelets/physiology*
;
Brain Neoplasms/pathology*
;
Tumor Microenvironment
3.Research on ethical issues and coping strategies of voice biomarkers in medical applications
Sikai SHAN ; Shuyu HAN ; Wenxia WANG ; Yufan YANG ; Xiaomeng WANG ; Wenmin ZHANG ; Siye CHEN ; Mo CHEN ; Zhiwen WANG
Chinese Medical Ethics 2025;38(10):1233-1239
Voice biomarkers, as an emerging smart medical technology, are now being used in applications such as assisting in the diagnosis and treatment of diseases, facilitating accurate and personalized medical services for patients. However, it also raises many ethical issues, including informed consent, privacy protection, accuracy and reliability, data security, legal risks, and other issues. This paper systematically sorted out the ethical issues in the applications of voice biomarkers in the medical field, summarized these issues, such as informed consent, privacy protection, accuracy and reliability, data security, and legal risks, as well as explored the corresponding coping strategies. These countermeasures encompassed utilizing new media platforms to raise public awareness of voice biomarkers, strengthening supervision and management to promote the privacy protection of voice biomarkers, reducing algorithm biases to promote the general benefits of voice biomarkers to the public, establishing multidisciplinary teams to protect the data security of voice biomarkers, and encouraging medical professionals and researchers to participate in policy research, with a view to providing references for promoting and regulating the applications of voice biomarkers in the medical field.
4.Discovery of a novel AhR-CYP1A1 axis activator for mitigating inflammatory diseases using an in situ functional imaging assay.
Feng ZHANG ; Bei ZHAO ; Yufan FAN ; Lanhui QIN ; Jinhui SHI ; Lin CHEN ; Leizhi XU ; Xudong JIN ; Mengru SUN ; Hongping DENG ; Hairong ZENG ; Zhangping XIAO ; Xin YANG ; Guangbo GE
Acta Pharmaceutica Sinica B 2025;15(1):508-525
The aryl hydrocarbon receptor (AhR) plays a crucial role in regulating many physiological processes. Activating the AhR-CYP1A1 axis has emerged as a novel therapeutic strategy against various inflammatory diseases. Here, a practical in situ cell-based fluorometric assay was constructed to screen AhR-CYP1A1 axis modulators, via functional sensing of CYP1A1 activities in live cells. Firstly, a cell-permeable, isoform-specific enzyme-activable fluorogenic substrate for CYP1A1 was rationally constructed for in-situ visualizing the dynamic changes of CYP1A1 function in living systems, which was subsequently used for discovering the efficacious modulators of the AhR-CYP1A1 axis. Following screening of a compound library, LAC-7 was identified as an efficacious activator of the AhR-CYP1A1 axis, which dose-dependently up-regulated the expression levels of both CYP1A1 and AhR in multiple cell lines. LAC-7 also suppressed macrophage M1 polarization and reduced the levels of inflammatory factors in LPS-induced bone marrow-derived macrophages. Animal tests showed that LAC-7 could significantly mitigate DSS-induced ulcerative colitis and LPS-induced acute lung injury in mice, and markedly reduced the levels of multiple inflammatory factors. Collectively, an optimized fluorometric cell-based assay was devised for in situ functional imaging of CYP1A1 activities in living systems, which strongly facilitated the discovery of efficacious modulators of the AhR-CYP1A1 axis as novel anti-inflammatory agents.
5.Discovery of novel butyrylcholinesterase inhibitors for treating Alzheimer's disease.
Zhipei SANG ; Shuheng HUANG ; Wanying TAN ; Yujuan BAN ; Keren WANG ; Yufan FAN ; Hongsong CHEN ; Qiyao ZHANG ; Chanchan LIANG ; Jing MI ; Yunqi GAO ; Ya ZHANG ; Wenmin LIU ; Jianta WANG ; Wu DONG ; Zhenghuai TAN ; Lei TANG ; Haibin LUO
Acta Pharmaceutica Sinica B 2025;15(4):2134-2155
Alzheimer's disease (AD) is a common neurodegenerative disorder among the elderly, and BuChE has emerged as a potential therapeutic target. In this study, we reported the development of compound 8e, a selective reversible BuChE inhibitor (eqBuChE IC50 = 0.049 μmol/L, huBuChE IC50 = 0.066 μmol/L), identified through extensive virtual screening and lead optimization. Compound 8e demonstrated favorable blood-brain barrier permeability, good drug-likeness property and pronounced neuroprotective efficacy. Additionally, 8e exhibited significant therapeutic effects in zebrafish AD models and scopolamine-induced cognitive impairments in mice. Further, 8e significantly improved cognitive function in APP/PS1 transgenic mice. Proteomics analysis demonstrated that 8e markedly elevated the expression levels of very low-density lipoprotein receptor (VLDLR), offering valuable insights into its potential modulation of the Reelin-mediated signaling pathway. Thus, compound 8e emerges as a novel and potent BuChE inhibitor for the treatment of AD, with significant implications for further exploration into its mechanisms of action and therapeutic applications.
6.High-efficient discovering the potent anti-Notum agents from herbal medicines for combating glucocorticoid-induced osteoporosis.
Yuqing SONG ; Feng ZHANG ; Jia GUO ; Yufan FAN ; Hairong ZENG ; Mengru SUN ; Jun QIAN ; Shenglan QI ; Zihan CHEN ; Xudong JIN ; Yunqing SONG ; Tian TIAN ; Zhi QIAN ; Yao SUN ; Zhenhao TIAN ; Baoqing YU ; Guangbo GE
Acta Pharmaceutica Sinica B 2025;15(8):4174-4192
Notum, a negative feedback regulator of the Wnt signaling, has emerged as a promising target for treating glucocorticoid-induced osteoporosis (GIOP). This study showcases an efficient strategy for discovering the anti-Notum constituents from herbal medicines (HMs) as novel anti-GIOP agents. Firstly, a rapid-responding near-infrared fluorogenic substrate for Notum was rationally engineered for high-throughput identifying the anti-Notum HMs. The results showed that Bu-Gu-Zhi (BGZ), a known anti-osteoporosis herb, potently inhibited Notum in a competitive-inhibition manner. To uncover the key anti-Notum constituents in BGZ, an efficient strategy was adapted via integrating biochemical, phytochemical, computational, and pharmacological assays. Among all identified BGZ constituents, three furanocoumarins were validated as strong Notum inhibitors, while 5-methoxypsoralen (5-MP) showed the most potent anti-Notum activity and favorable safety profiles. Mechanistically, 5-MP acted as a competitive inhibitor of Notum via creating strong hydrophobic interactions with Trp128 and Phe268 in the catalytic cavity of Notum. Cellular assays showed that 5-MP remarkably promoted osteoblast differentiation and activated Wnt signaling in dexamethasone (DXMS)-challenged MC3T3-E1 osteoblasts. In dexamethasone-induced osteoporotic mice, 5-MP strongly elevated bone mineral density (BMD) and improved cancellous and cortical bone thickness. Collectively, this study constructs a high-efficient platform for discovering key anti-Notum constituents from HMs, while 5-MP emerges as a promising anti-GIOP agent.
7.Discovery of orally active and serine-targeting covalent inhibitors against hCES2A for ameliorating irinotecan-triggered gut toxicity.
Ya ZHANG ; Yufan FAN ; Yunqing SONG ; Guanghao ZHU ; Xinjuan LI ; Jian HUANG ; Xinrui GUO ; Changhai LUAN ; Dongning KANG ; Lu CHEN ; Zhangping XIAO ; Zhaobin GUO ; Hairong ZENG ; Dapeng CHEN ; Zhipei SANG ; Guangbo GE
Acta Pharmaceutica Sinica B 2025;15(10):5312-5326
Human carboxylesterase 2A (hCES2A) plays pivotal roles in prodrug activation and hydrolytic metabolism of ester-bearing chemicals. Targeted inhibition of intestinal hCES2A represents a feasible strategy to mitigate irinotecan-triggered gut toxicity (ITGT), but the orally active, selective, and efficacious hCES2A inhibitors are rarely reported. Here, a novel drug-like hCES2A inhibitor was developed via three rounds of structure-based drug design (SBDD) and structural optimization. Initially, donepezil was identified as a moderate hCES2A inhibitor from 2000 US Food and Drug Administration (FDA)-approved drugs. Following two rounds of SBDD and structural optimization, a donepezil derivative (B7) was identified as a strong reversible hCES2A inhibitor. Subsequently, nine B7 carbamates were rationally designed, synthesized and biologically assayed. Among all synthesized carbamates, C3 showed the most potent time-dependent inhibition on hCES2A (IC50 = 0.56 nmol/L), excellent specificity and favorable drug-like properties. C3 could covalently modify the catalytic serine of hCES2A with high selectivity, while this agent also showed favorable safety profiles, high intestinal exposure, and impressive effects for ameliorating ITGT in both human intestinal organoids and tumor-bearing mice. Collectively, this study showcases a rational strategy for developing drug-like and serine-targeting covalent inhibitors against target serine hydrolase(s), while C3 emerges as a promising orally active drug candidate for ameliorating ITGT.
8.Mechanism and application of stem cell-derived apoptotic bodies in regulating tissue regeneration
Yufan ZHU ; Xihang CHEN ; Yunjun LIAO
Chinese Journal of Plastic Surgery 2024;40(9):1018-1025
Apoptotic bodies (ApoBDs) therapy is a novel and promising cell-free therapeutic strategy. However, the therapeutic mechanism and application of stem cells derived ApoBDs in tissue regeneration have not yet received adequate attention and research evidence. This review summarized the physiological and pathological effects, formation, release, enrichment and purification process of ApoBDs in detail. Furthermore, this review introduced the possible mechanism researches of stem cell-derived ApoBDs regulating regeneration of different organs and tissues, evaluated the possible strategies for their applications as drug delivery carrier, and prospected the development of the engineered modified ApoBDs in regenerative medicine.
9.Mechanism and application of stem cell-derived apoptotic bodies in regulating tissue regeneration
Yufan ZHU ; Xihang CHEN ; Yunjun LIAO
Chinese Journal of Plastic Surgery 2024;40(9):1018-1025
Apoptotic bodies (ApoBDs) therapy is a novel and promising cell-free therapeutic strategy. However, the therapeutic mechanism and application of stem cells derived ApoBDs in tissue regeneration have not yet received adequate attention and research evidence. This review summarized the physiological and pathological effects, formation, release, enrichment and purification process of ApoBDs in detail. Furthermore, this review introduced the possible mechanism researches of stem cell-derived ApoBDs regulating regeneration of different organs and tissues, evaluated the possible strategies for their applications as drug delivery carrier, and prospected the development of the engineered modified ApoBDs in regenerative medicine.
10.A study on the animal model preparation and early histological changes of trans-sutural distraction osteo-genesis
Zhihe ZHAO ; Yufan ZHANG ; Wenhui ZHANG ; Yicheng CHEN ; Xuelian JIA ; Shanluo ZHOU ; Fuding SHEN ; Yuxuan DU ; Yunpeng LI ; Liang KONG
Journal of Practical Stomatology 2024;40(2):173-179
Objective:To establish an animal model of trans-sutural distraction osteogenesis in SD rats.Methods:A self-designed V-shaped distraction device(distractor)was fabricated with the traction force(N)of 0,1.3,2.2,3.0,4.3 and 5.0 corresponding to the distraction length(mm)of 5,4,3,2,1 and 0 respectively,meeting the trans-sutural distraction osteogenesis requirements in skull of 5-week-old SD rats.The distractor was plased into the sagittal suture of 12 SD rats.Continuous sampling was conducted 1,3,5 and 7 days respectively(n=3)after operation.The tissue changes in the trans-sutural distraction area were observed by HE and Masson's trichrome staining.Inflammation levels were determined using Arg-1 immunofluorescence staining.The early angiogenesis was clarified through co-staining with CD31 and EMCN.Results:A stable trans-sutural distraction osteogenesis model was estab-lished,5 mm distraction osteogenesis width was observed completely within 7 days of distraction.Significant new bone formation was observed at 7 days after operation.Arg-1 expression increased and was concentrated at the bone margins,overlapping with the areas of new bone formation.EMCN expression gradually decreased,and by day 7 CD31 was predominant,indicating the basic maturation of blood vessels.Conclusion:This study successfully constructed a stable and effective trans-sutural distraction osteogenesis animal model,and provides an experimental basis for the investigation of its early continuous histological changes.

Result Analysis
Print
Save
E-mail