1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Five new triterpenoid saponins from the kernels of Momordica cochinchinensis
Ru DING ; Jia-qi WANG ; Yi-yang LUO ; Yong-long HAN ; Xiao-bo LI ; Meng-yue WANG
Acta Pharmaceutica Sinica 2025;60(2):442-448
Five saponins were isolated from the kernels of
3.Pharmacodynamic Substances and Mechanisms of Da Chengqitang in Treating Stroke: A Review
Yizhi YAN ; Xinyi LIU ; Yang DUAN ; Miaoqing LONG ; Chaoya LI ; Qiang LI ; Yi'an CHEN ; Shasha YANG ; Yue ZHANG ; Peng ZENG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):297-306
Stroke is the main cause of death and disability among adults in China and is characterized by high incidence, disability, mortality, and recurrence rates. The combination of traditional Chinese and Western medicine has great potential in treating stroke and its sequelae. The classic traditional Chinese medicine prescription Da Chengqitang (DCQT) has a long history and proven efficacy in treating stroke. Clinically, DCQT is often used to treat stroke and its sequelae. However, the number and quality of clinical trials of DCQT in treating stroke need to be improved. Because of the insufficient basic research, the active ingredients and multi-target mechanism of action of DCQT remain unclear. Our research group has previously confirmed that DCQT can effectively reverse neurological damage, reduce iron deposition, and downregulate the levels of pro-inflammatory cytokines in the rat model of hemorrhagic stroke. The treatment mechanism is related to the nuclear factor erythroid 2-related factor 2 (Nrf2)-mediated signaling pathway and p38 mitogen-activated protein kinase (MAPK) signaling-mediated microglia activation. To clarify the pharmacodynamic basis and anti-stroke mechanism of DCQT, this article reviews the research progress in the treatment of stroke with DCQT in terms of clinical trials, pharmacodynamic material basis, safety evaluation, and mechanisms of absorbed components. This article summarizes 45 major phytochemical components of DCQT, 11 of which are currently confirmed absorbed components. Among them, emodin, rhein, chrysophanol, aloe-emodin, synephrine, hesperidin, naringin, magnolol, and honokiol can be used as quality markers (Q-markers) of DCQT. The mechanism of DCQT in treating stroke is complex, involving regulation of inflammatory responses, neuronal damage, oxidative stress, blood-brain barrier, brain-derived neurotrophic factor, and anti-platelet aggregation. This article helps to deeply understand the pharmacodynamic basis and mechanism of DCQT in treating stroke and provides a theoretical basis for the clinical application of DCQT in treating stroke and the development of stroke drugs.
4.Heterogeneity of Adipose Tissue From a Single-cell Transcriptomics Perspective
Yong-Lang WANG ; Si-Si CHEN ; Qi-Long LI ; Yu GONG ; Xin-Yue DUAN ; Ye-Hui DUAN ; Qiu-Ping GUO ; Feng-Na LI
Progress in Biochemistry and Biophysics 2025;52(4):820-835
Adipose tissue is a critical energy reservoir in animals and humans, with multifaceted roles in endocrine regulation, immune response, and providing mechanical protection. Based on anatomical location and functional characteristics, adipose tissue can be categorized into distinct types, including white adipose tissue (WAT), brown adipose tissue (BAT), beige adipose tissue, and pink adipose tissue. Traditionally, adipose tissue research has centered on its morphological and functional properties as a whole. However, with the advent of single-cell transcriptomics, a new level of complexity in adipose tissue has been unveiled, showing that even under identical conditions, cells of the same type may exhibit significant variation in morphology, structure, function, and gene expression——phenomena collectively referred to as cellular heterogeneity. Single-cell transcriptomics, including techniques like single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq), enables in-depth analysis of the diversity and heterogeneity of adipocytes at the single-cell level. This high-resolution approach has not only deepened our understanding of adipocyte functionality but also facilitated the discovery of previously unidentified cell types and gene expression patterns that may play key roles in adipose tissue function. This review delves into the latest advances in the application of single-cell transcriptomics in elucidating the heterogeneity and diversity within adipose tissue, highlighting how these findings have redefined the understanding of cell subpopulations within different adipose depots. Moreover, the review explores how single-cell transcriptomic technologies have enabled the study of cellular communication pathways and differentiation trajectories among adipose cell subgroups. By mapping these interactions and differentiation processes, researchers gain insights into how distinct cellular subpopulations coordinate within adipose tissues, which is crucial for maintaining tissue homeostasis and function. Understanding these mechanisms is essential, as dysregulation in adipose cell interactions and differentiation underlies a range of metabolic disorders, including obesity and diabetes mellitus type 2. Furthermore, single-cell transcriptomics holds promising implications for identifying therapeutic targets; by pinpointing specific cell types and gene pathways involved in adipose tissue dysfunction, these technologies pave the way for developing targeted interventions aimed at modulating specific adipose subpopulations. In summary, this review provides a comprehensive analysis of the role of single-cell transcriptomic technologies in uncovering the heterogeneity and functional diversity of adipose tissues.
5.Analysis of Clinical Diagnosis and Traditional Chinese Medicine Medication Rule of Children with Nephrotic Syndrome in Single Center
Tingting XU ; Xia ZHANG ; Ying DING ; Long WANG ; Shanshan XU ; Yijin WANG ; Yue WANG ; Feiyu YAO ; Chundong SONG ; Wensheng ZHAI ; Xianqing REN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):176-184
ObjectiveTo analyze the clinical treatment plan and traditional Chinese medicine (TCM) medication rule of children with primary nephrotic syndrome (PNS) in the First Affiliated Hospital of Henan University of Chinese Medicine. MethodsThe gender and age of children firstly diagnosed with nephrotic syndrome in the pediatric nephrology department of the First Affiliated Hospital of Henan University of Chinese Medicine from November 2019 to December 2022 were collected, and the use of immunosuppressive agents and related frequencies were counted. According to the inclusion and exclusion criteria, an independent TCM prescription database for children with nephrotic syndrome was established. Excel was used to analyze the relevant information of the literature. The frequency counting, association rule analysis, and cluster analysis were carried out on TCM in the prescription, and the high-frequent drugs were analyzed. Results(1) General information: A total of 711 children were included, consisting of 522 males (73.42%) and 189 females (26.58%). The ratio of male to female was about 2.76∶1. The disease mainly occurred in infants and preschool age, and the average age of onset was (4.74 ± 3.48) years old. (2) Clinical treatment plan and use of immunosuppressive agents: Of the 711 children with PNS, 237 were treated with hormone alone (32.33%), and 474 (66.67%) received immunosuppressive agents combined with hormones. In the initial treatment, hormone combined with Tacrolimus (TAC) was the preferred treatment (32.91%). For children with refractory PNS who exhibited poor clinical efficacy, Rituximab (RTX) was mostly used for treatment, with a ratio of up to 23.63%. (3) TCM syndrome and medication rule: In PNS syndrome differentiation, Qi and Yin deficiency was identified as the main syndrome. This involved a total of 477 cases, accounting for 67.09%. Yang deficiency of spleen and kidney was observed in 118 cases, accounting for 16.60%. A total of 711 children were included, of which 706 children were treated with TCM. This involved a total of 706 prescriptions, 226 TCM, and 9 793 frequencies. There were 30 herbs used more than 95 times. The top five TCM were Radix et Rhizoma Glycyrrhizae (81.16%), Radix Astragali (71.81%), Poria (68.84%), Rhizoma Atractylodis Macrocephalae (63.60%), and Fructus Corni (57.37%). The drug association rules and network diagram showed that the combination of ''Radix Astragali-Rhizoma Atractylodis Macrocephalae-Poria'' was the closest, and five types of combinations were obtained by cluster analysis. ConclusionIn the diagnosis and treatment of PNS in children, TAC combined with hormones shows good clinical efficacy and high safety. For children with refractory PNS, RTX combined with hormones can be used. TCM medication for PNS should follow the basic principles of strengthening the body and vital Qi and make good use of drugs such as Radix Astragali, Poria, Rhizoma Atractylodis Macrocephalae, and cornus to regulate the Yin and Yang balance and achieve better clinical efficacy.
6.Analysis of Clinical Diagnosis and Traditional Chinese Medicine Medication Rule of Children with Nephrotic Syndrome in Single Center
Tingting XU ; Xia ZHANG ; Ying DING ; Long WANG ; Shanshan XU ; Yijin WANG ; Yue WANG ; Feiyu YAO ; Chundong SONG ; Wensheng ZHAI ; Xianqing REN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):176-184
ObjectiveTo analyze the clinical treatment plan and traditional Chinese medicine (TCM) medication rule of children with primary nephrotic syndrome (PNS) in the First Affiliated Hospital of Henan University of Chinese Medicine. MethodsThe gender and age of children firstly diagnosed with nephrotic syndrome in the pediatric nephrology department of the First Affiliated Hospital of Henan University of Chinese Medicine from November 2019 to December 2022 were collected, and the use of immunosuppressive agents and related frequencies were counted. According to the inclusion and exclusion criteria, an independent TCM prescription database for children with nephrotic syndrome was established. Excel was used to analyze the relevant information of the literature. The frequency counting, association rule analysis, and cluster analysis were carried out on TCM in the prescription, and the high-frequent drugs were analyzed. Results(1) General information: A total of 711 children were included, consisting of 522 males (73.42%) and 189 females (26.58%). The ratio of male to female was about 2.76∶1. The disease mainly occurred in infants and preschool age, and the average age of onset was (4.74 ± 3.48) years old. (2) Clinical treatment plan and use of immunosuppressive agents: Of the 711 children with PNS, 237 were treated with hormone alone (32.33%), and 474 (66.67%) received immunosuppressive agents combined with hormones. In the initial treatment, hormone combined with Tacrolimus (TAC) was the preferred treatment (32.91%). For children with refractory PNS who exhibited poor clinical efficacy, Rituximab (RTX) was mostly used for treatment, with a ratio of up to 23.63%. (3) TCM syndrome and medication rule: In PNS syndrome differentiation, Qi and Yin deficiency was identified as the main syndrome. This involved a total of 477 cases, accounting for 67.09%. Yang deficiency of spleen and kidney was observed in 118 cases, accounting for 16.60%. A total of 711 children were included, of which 706 children were treated with TCM. This involved a total of 706 prescriptions, 226 TCM, and 9 793 frequencies. There were 30 herbs used more than 95 times. The top five TCM were Radix et Rhizoma Glycyrrhizae (81.16%), Radix Astragali (71.81%), Poria (68.84%), Rhizoma Atractylodis Macrocephalae (63.60%), and Fructus Corni (57.37%). The drug association rules and network diagram showed that the combination of ''Radix Astragali-Rhizoma Atractylodis Macrocephalae-Poria'' was the closest, and five types of combinations were obtained by cluster analysis. ConclusionIn the diagnosis and treatment of PNS in children, TAC combined with hormones shows good clinical efficacy and high safety. For children with refractory PNS, RTX combined with hormones can be used. TCM medication for PNS should follow the basic principles of strengthening the body and vital Qi and make good use of drugs such as Radix Astragali, Poria, Rhizoma Atractylodis Macrocephalae, and cornus to regulate the Yin and Yang balance and achieve better clinical efficacy.
7.Construction of oleanolic acid-producing Saccharomyces cerevisiae cells.
Yue ZHANG ; Xue-Mi HAO ; Cai-Xia WANG ; Long-Shan ZHAO
China Journal of Chinese Materia Medica 2025;50(9):2365-2372
In this study, Saccharomyces cerevisiae R0 was used as the chassis cell to synthesize oleanolic acid from scratch through the heterologous expression of β-amyrin synthase(β-AS) from Glycyrrhiza uralensis, cytochrome P450 enzyme CYP716A154 from Catharanthus roseus, and cytochrome P450 reductase AtCPR from Arabidopsis thaliana. The engineered strain R1 achieved shake flask titres of 5.19 mg·L~(-1). By overexpressing enzymes in the pentose phosphate pathway(PPP)(ZWF1, GND1, TKL1, and TAL), the NADH kinase gene in the mitochondrial matrix(POS5), truncated 3-hydroxy-3-methylglutaryl-CoA reductase(tPgHMGR1) from Panax ginseng, and farnesyl diphosphate synthase gene(SmFPS) from Salvia miltiorrhiza, the precursor supply and intracellular reduced nicotinamide adenine dinucleotide phosphate(NADPH) supply were enhanced, resulting in an 11.4-fold increase in squalene yield and a 3.6-fold increase in oleanolic acid yield. Subsequently, increasing the copy number of the heterologous genes tPgHMGR1, β-AS, CYP716A154, and AtCPR promoted the metabolic flow towards the final product, oleanolic acid, and increased the yield by three times. Shake flask fermentation data showed that, by increasing the copy number, precursor supply, and intracellular NADPH supply, the final engineered strain R3 could achieve an oleanolic acid yield of 53.96 mg·L~(-1), which was 10 times higher than that of the control strain R1. This study not only laid the foundation for the green biosynthesis of oleanolic acid but also provided a reference for metabolic engineering research on other pentacyclic triterpenoids in S. cerevisiae.
Oleanolic Acid/biosynthesis*
;
Saccharomyces cerevisiae/metabolism*
;
Industrial Microbiology
;
Microorganisms, Genetically-Modified/metabolism*
;
Plants/enzymology*
;
Fermentation
;
Metabolic Engineering
8.Mechanism of Tougu Xiaotong Capsules regulating Malat1 and mi R-16-5p ceRNA to alleviate "cholesterol-iron" metabolism disorder in osteoarthritis chondrocytes.
Chang-Long FU ; Yan-Ming LIN ; Shu-Jie LAN ; Chao LI ; Zi-Hong ZHANG ; Yue CHEN ; Ying-Rui TONG ; Yan-Feng HUANG
China Journal of Chinese Materia Medica 2025;50(15):4363-4371
From the perspective of competitive endogenous RNA(ceRNA) constructed by metastasy-associated lung adenocarcinoma transcript 1(Malat1) and microRNA 16-5p(miR-16-5p), the improvement mechanism of Tonggu Xiaotong Capsules(TGXTC) on the imbalance and disorder of "cholesterol-iron" metabolism in chondrocytes of osteoarthritis(OA) was explored. In vivo experiments, 60 8-week-old C57BL/6 mice were acclimatized and fed for 1 week and then randomly divided into two groups: blank group(12 mice) and modeling group(48 mice). The animals in modeling group were anesthetized by 5% isoflurane inhalation, which was followed by the construction of OA model. They were then randomly divided into model group, TGXTC group, Malat1 overexpression group, and TGXTC+Malat1 overexpression(TGXTC+Malat1-OE) group, with 12 mice in each group. The structural changes of mouse cartilage tissues were observed by Masson staining after the intervention in each group. RT-PCR was employed to detect the mRNA levels of Malat1 and miR-16-5p in cartilage tissues. Western blot was used to analyze the protein expression of ATP-binding cassette transporter A1(ABCA1), sterol regulatory element-binding protein(SREBP), cytochrome P450 family 7 subfamily B member 1(CYP7B1), CCAAT/enhancer-binding protein homologous protein(CHOP), acyl-CoA synthetase long-chain family member 4(ACSL4), and glutathione peroxidase 4(GPX4) in cartilage tissues. In vitro experiments, mouse chondrocytes were induced by thapsigargin(TG), and the combination of Malat1 and miR-16-5p was detected by double luciferase assay. The fluorescence intensity of Malat1 in chondrocytes was determined by fluorescence in situ hybridization. The miR-16-5p inhibitory chondrocyte model was constructed. RT-PCR was used to analyze the levels of Malat1 and miR-16-5p in chondrocytes under the inhibition of miR-16-5p. Western blot was adopted to analyze the regulation of TG-induced chondrocyte proteins ABCA1, SREBP, CYP7B1, CHOP, ACSL4, and GPX4 by TGXTC under the inhibition of miR-16-5p. The results of in vivo experiments showed that,(1) compared with model group, TGXTC group exhibited a relatively complete cartilage layer structure. Compared with Malat1-OE group, TGXTC+Malat1-OE group showed alleviated cartilage surface damage.(2) Compared with model group, TGXTC group had a significantly decreased Malat1 mRNA level and an increased miR-16-5p mRNA level in mouse cartilage tissues(P<0.01).(3) Compared with the model group, the protein levels of ABCA1 and GPX4 in the cartilage tissue of mice in the TGXTC group increased, while the protein levels of SREBP, CYP7B1, CHOP and ACSL4 decreased(P<0.01). The results of in vitro experiments show that,(1) dual-luciferase was used to evaluate that miR-16-5p has a targeting effect on the Malat1 gene.(2)Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group had an increased mRNA level of miR-16-5p and an decreased mRNA level of Malat1(P<0.01).(3) Compared with TG+miR-16-5p inhibition group, TG+miR-16-5p inhibition+TGXTC group exhibited increased expression of ABCA1 and GPX4 proteins and decreased expression of SREBP, CYP7B1, CHOP, and ACSL4 proteins(P<0.01). The reasults showed that TGXTC can regulate the ceRNA of Malat1 and miR-16-5p to alleviate the "cholesterol-iron" metabolism disorder of osteoarthritis chondrocytes.
Animals
;
MicroRNAs/metabolism*
;
RNA, Long Noncoding/metabolism*
;
Chondrocytes/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Mice, Inbred C57BL
;
Mice
;
Osteoarthritis/drug therapy*
;
Iron/metabolism*
;
Male
;
Cholesterol/metabolism*
;
Humans
;
Capsules
;
RNA, Competitive Endogenous
9.Development of oral preparations of poorly soluble drugs based on polymer supersaturated self-nanoemulsifying drug delivery technology.
Xu-Long CHEN ; Jiang-Wen SHEN ; Wei-Wei ZHA ; Jian-Yun YI ; Lin LI ; Zhang-Ting LAI ; Zheng-Gen LIAO ; Ye ZHU ; Yue-Er CHENG ; Cheng LI
China Journal of Chinese Materia Medica 2025;50(16):4471-4482
Poor water solubility is the primary obstacle preventing the development of many pharmacologically active compounds into oral preparations. Self-nanoemulsifying drug delivery systems(SNEDDS) have become a widely used strategy to enhance the oral bioavailability of poorly soluble drugs by inducing a supersaturated state, thereby improving their apparent solubility and dissolution rate. However, the supersaturated solutions formed in SNEDDS are thermodynamically unstable systems with solubility levels exceeding the crystalline equilibrium solubility, making them prone to drug precipitation in the gastrointestinal tract and ultimately hindering drug absorption. Therefore, maintaining a stable supersaturated state is crucial for the effective delivery of poorly soluble drugs. Incorporating polymers as precipitation inhibitors(PPIs) into the formulation of supersaturated self-nanoemulsifying drug delivery systems(S-SNEDDS) can inhibit drug aggregation and crystallization, thus maintaining a stable supersaturated state. This has emerged as a novel preparation strategy and a key focus in SNEDDS research. This review explores the preparation design of SNEDDS and the technical challenges involved, with a particular focus on polymer-based S-SNEDDS for enhancing the solubility and oral bioavailability of poorly soluble drugs. It further elucidates the mechanisms by which polymers participate in transmembrane transport, summarizes the principles by which polymers sustain a supersaturated state, and discusses strategies for enhancing drug absorption. Altogether, this review provides a structured framework for the development of S-SNEDDS preparations with stable quality and reduced development risk, and offers a theoretical reference for the application of S-SNEDDS technology in improving the oral bioavailability of poorly soluble drugs.
Solubility
;
Administration, Oral
;
Polymers/chemistry*
;
Drug Delivery Systems/methods*
;
Humans
;
Emulsions/chemistry*
;
Biological Availability
;
Animals
;
Pharmaceutical Preparations/administration & dosage*
10.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.

Result Analysis
Print
Save
E-mail