1.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
4.Progress on antisense oligonucleotide in the field of antibacterial therapy
Jia LI ; Xiao-lu HAN ; Shi-yu SONG ; Jin-tao LIN ; Zhi-qiang TANG ; Zeng-ming WANG ; Liang XU ; Ai-ping ZHENG
Acta Pharmaceutica Sinica 2025;60(2):337-347
With the widespread use of antibiotics, drug-resistant bacterial infections have become a significant threat to human health. Finding new antibacterial strategies that can effectively control drug-resistant bacterial infections has become an urgent task. Unlike small molecule drugs that target bacterial proteins, antisense oligonucleotide (ASO) can target genes related to bacterial resistance, pathogenesis, growth, reproduction and biofilm formation. By regulating the expression of these genes, ASO can inhibit or kill bacteria, providing a novel approach for the development of antibacterial drugs. To overcome the challenge of delivering antisense oligonucleotide into bacterial cells, various drug delivery systems have been applied in this field, including cell-penetrating peptides, lipid nanoparticles and inorganic nanoparticles, which have injected new momentum into the development of antisense oligonucleotide in the antibacterial realm. This review summarizes the current development of small nucleic acid drugs, the antibacterial mechanisms, targets, sequences and delivery vectors of antisense oligonucleotide, providing a reference for the research and development of antisense oligonucleotide in the treatment of bacterial infections.
5.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
6.Interaction between neuron-glial cell gap junction and neural circuit
Hong-Bin WANG ; Jiao YAO ; Hui-Qin WANG ; Zhi-Feng TIAN ; Qi-Di AI ; Mei-Yu LIN ; Yan-Tao YANG ; Song-Wei YANG ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2024;40(7):1210-1214
Gap junction(GJ),also known as gap junction,is widely found between neurons and glial cells,and can connect neighboring cells and mediate the transmission of electrical sig-nals between neighboring cells.The GJ channel,which exists between neurons and mediates intercellular electrical signaling,is also known as an electrical synapse.Connexins(Cxs)are the molecular basis of GJ,and are expressed to different degrees in different neurons and glial cells.The presence of GJ mediates different functions among neurons and glial cells,which further influences the establishment of various mature neural circuits,re-flecting the importance of GJ in the maintenance of neural cir-cuits.This review summarizes the relationship between GJ and neural circuits in relation to the effects of GJ and different Cxs on neurons and glial cells,providing new research ideas for the treatment of neuropsychiatric disorders.
7.Effect of recombinant glycoprotein hormone beta5/alpha2 on promoting lipolysis via regulation of cAMP/PKA/CREB pathway in 3T3-L1 adipocytes and its mechanism
Ai-Jun QIAN ; Geng-Miao XIAO ; Zhuang LI ; Xue TIAN ; Xiao-Hong LIU ; Yu-Ping SONG ; Zheng-Gang ZHAO ; Zi-Jian ZHAO ; Fang-Hong LI
Chinese Pharmacological Bulletin 2024;40(7):1272-1278
Aim To investigate the effect of recombi-nant glycoprotein hormone β5/α2(rCGH)on lipolysis in 3T3-L1 adipocytes,and explore the underlying mechanism.Methods 3T3-L1 preadipocytes were cultured and induced to differentiate into mature adipo-cytes,then treated with different concentrations of rCGH for 24 h in vitro.Cell viability of 3T3-L1 adipo-cytes was evaluated by CCK-8 assay,the levels of in-tracellular triglyceride(TG)and glycerol in the culture supernatant were measured by enzymatic method,and the changes of lipid droplets were observed by oil red O staining.The expression levels of HSL and ATGL lipo-lytic proteins in adipocytes were detected by Western blot.To carry out the intervention experiment with dif-ferent concentrations of rCGH with or without the PKA inhibitor,H89,on the mature 3T3-L1 adipocytes,the cultured cells were divided into the control group,H89 pre treatment group,1 μmol·L-1 rCGH group,and(1 μmol·L-1 rCGH+H89)combined intervention group.The contents of intracellular TG and free glycer-ol were measured by enzymatic method,and the ex-pression of CREB and lipolysis-related proteins was de-tected using Western blot.Results Different concen-trations of rCGH(0.25,0.5,1,and 2 μmol·L-1)had no significant effect on the cell viability of adipo-cytes(P>0.05).Compared with the control group,the treatment with rCGH significantly decreased the size of lipid droplets and intracellular TG content,while significantly elevated glycerol concentration in cell supernatant.rCGH treatment also stimulated the protein expression of p-HSL,ATGL,and p-PKA.In addition,the addition of a PKA inhibitor,H89,atten-uated the effects of rCGH on free glycerol level,intra-cellular TG content,and the expression of p-HSL,p-PLIN1,and p-CREB.Conclusions rCGH enhances the lipolysis of 3T3-L1 adipocytes by up-regulating the activities of HSL,ATGL and PKA,promoting glycerol release,inhibiting TG synthesis and lipid accumula-tion,and its mechanism of action is related to the acti-vation of cAMP/PKA/CREB signaling pathway.
8.Advances in exosomes and Alzheimer's disease
Jin-Ping LIANG ; Yu-Chen ZHU ; Sha-Sha LIU ; Yang SUN ; Bo-Yu KUANG ; Shi-Feng CHU ; Nai-Hong CHEN ; Qi-Di AI ; Yan-Tao YANG
Chinese Pharmacological Bulletin 2024;40(9):1628-1633
Exosomes represent a class of nanoscale extracellular vesicles that facilitate the exchange of genetic information among various cells.Alzheimer's disease(AD)stands as a progressive neurodegenerative disorder characterized by its subtle and advan-cing onset,representing the foremost form of dementia lacking effective therapeutic interventions.Notably,investigations have illuminated the involvement of exosomes in the pathogenesis of AD,attributing diagnostic and therapeutic significance to their role,particularly concerning exosomal microRNAs(miRNA).The miRNAs carried by exosomes serve as potential biomarkers for AD,while also exhibiting potential benefits in ameliorating cognitive dysfunction in individuals afflicted by AD.This article aims to comprehensively review the origins of exosomes(encom-passing both mesenchymal cell-derived exosomes and brain-de-rived exosomes)and their potential as therapeutic agents targe-ting AD.
9.Research progress in regulatory mechanism and traditional Chinese medicine intervention of circular RNA for coronary atherosclerotic heart disease
Lan-Tian HU ; Xue-Na XIE ; Yu-Ying WANG ; Mei LIU ; Hong-Ai GUO ; Rong YUAN ; Qi-Qi XIN ; Yu MIAO ; Wei-Hong CONG
Chinese Pharmacological Bulletin 2024;40(11):2014-2019
Coronary atherosclerotic heart disease(CHD)is an ischemic cardiovascular condition caused by the narrowing or blockage of the vascular lumen due to coronary atherosclerosis.Clinically,it presents as angina pectoris,heart failure,or sud-den cardiac death,and stands as one of the primary causes of mortality among both urban and rural populations in China.Cir-cRNA,classified as non-coding RNAs,can function as upstream regulatory molecules for miRNA or RNA-binding proteins.They actively participate in various pathological processes associated with CHD,including endothelial cell dysfunction,smooth mus-cle cell migration,macrophage-derived foam cell formation,an-giogenesis,myocardial injury,and repair,as well as post-in-farction heart failure.The expression pattern of these molecules is highly specific to the illness and tissue,indicating their poten-tial as therapeutic targets for disease management and as biomar-kers.Furthermore,they also open up new avenues for drug tar-get development in the field of traditional Chinese medicine.This article aims to provide an overview of the recent research progress on circRNA in the regulation of coronary heart disease,as well as the mechanisms involved in traditional Chinese medi-cine.It serves as a valuable reference for future research on cor-onary heart disease.
10.Progress on mechanism of action and neuroprotective effects of notoginsenoside R1
Han-Long WANG ; Yang SUN ; Sha-Sha LIU ; Jun-Peng LONG ; Qian YAN ; Yu-Ting LIN ; Jin-Ping LIANG ; Shi-Feng CHU ; Yan-Tao YANG ; Qi-Di AI ; Nai-Hong CHEN
Chinese Pharmacological Bulletin 2024;40(11):2020-2025
Panax notoginseng is the dried root and rhizome of Panax notoginseng(Burk.)F.H.Chen,a perennial erect herb of the genus Ginseng of the family Wujiaceae.As a traditional Chinese medicine in our country,Panax notoginseng has a good tonic effect,and the Dictionary of Traditional Chinese Medicines has the words that Panax notoginseng is used to tonify the blood,remove the blood stasis and damage,and stop epistaxis.It can also be used to pass the blood and tonify the blood with the best efficacy,and it is the most precious one of the prescription med-icines.Eaten raw,it removes blood stasis and generates new blood,subdues swelling and stabilizes pain,stops bleeding with-out leaving stasis,and promotes blood circulation without hurting the new blood;taken cooked,it can be used to replenish and strengthen the body.Notoginsenoside R1 is a characteristic com-pound in the total saponin of Panax ginseng.In recent years,China's aging has been increasing,and the incidence of neuro-logical disorders has been increasing year by year.Meanwhile,reports on notoginsenoside R1 in the treatment of neurological disorders are increasing,and its neuroprotective effects have been exerted with precise efficacy.The purpose of this paper is to review the treatment of neurological diseases and the mecha-nism of action of notoginsenoside R1,so as to provide a certain theoretical basis for clinical use and new drug development.

Result Analysis
Print
Save
E-mail