1.Clinical guidelines for the diagnosis and treatment of osteoporotic thoracolumbar vertebral fracture with kyphotic deformity in the elderly (version 2024)
Jian CHEN ; Qingqing LI ; Jun GU ; Zhiyi HU ; Shujie ZHAO ; Zhenfei HUANG ; Tao JIANG ; Wei ZHOU ; Xiaojian CAO ; Yongxin REN ; Weihua CAI ; Lipeng YU ; Tao SUI ; Qian WANG ; Pengyu TANG ; Mengyuan WU ; Weihu MA ; Xuhua LU ; Hongjian LIU ; Zhongmin ZHANG ; Xiaozhong ZHOU ; Baorong HE ; Kainan LI ; Tengbo YU ; Xiaodong GUO ; Yongxiang WANG ; Yong HAI ; Jiangang SHI ; Baoshan XU ; Weishi LI ; Jinglong YAN ; Guangzhi NING ; Yongfei GUO ; Zhijun QIAO ; Feng ZHANG ; Fubing WANG ; Fuyang CHEN ; Yan JIA ; Xiaohua ZHOU ; Yuhui PENG ; Jin FAN ; Guoyong YIN
Chinese Journal of Trauma 2024;40(11):961-973
The incidence of osteoporotic thoracolumbar vertebral fracture (OTLVF) in the elderly is gradually increasing. The kyphotic deformity caused by various factors has become an important characteristic of OTLVF and has received increasing attention. Its clinical manifestations include pain, delayed nerve damage, sagittal imbalance, etc. Currently, the definition and diagnosis of OTLVF with kyphotic deformity in the elderly are still unclear. Although there are many treatment options, they are controversial. Existing guidelines or consensuses pay little attention to this type of fracture with kyphotic deformity. To this end, the Lumbar Education Working Group of the Spine Branch of the Chinese Medicine Education Association and Editorial Committee of Chinese Journal of Trauma organized the experts in the relevant fields to jointly develop Clinical guidelines for the diagnosis and treatment of osteoporotic thoracolumbar vertebral fractures with kyphotic deformity in the elderly ( version 2024), based on evidence-based medical advancements and the principles of scientificity, practicality, and advanced nature, which provided 18 recommendations to standardize the clinical diagnosis and treatment.
2.PDZD8 Augments Endoplasmic Reticulum-Mitochondria Contact and Regulates Ca2+ Dynamics and Cypd Expression to Induce Pancreatic β-Cell Death during Diabetes
Yongxin LIU ; Yongqing WEI ; Xiaolong JIN ; Hongyu CAI ; Qianqian CHEN ; Xiujuan ZHANG
Diabetes & Metabolism Journal 2024;48(6):1058-1072
Background:
Diabetes mellitus (DM) is a chronic metabolic disease that poses serious threats to human physical and mental health worldwide. The PDZ domain-containing 8 (PDZD8) protein mediates mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) formation in mammals. We explored the role of PDZD8 in DM and investigated its potential mechanism of action.
Methods:
High-fat diet (HFD)- and streptozotocin-induced mouse DM and palmitic acid (PA)-induced insulin 1 (INS-1) cell models were constructed. PDZD8 expression was detected using immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. MAM formation, interactions between voltage-dependent anion-selective channel 1 (VDAC1) and inositol 1,4,5-triphosphate receptor type 1 (IP3R1), pancreatic β-cell apoptosis and proliferation were detected using transmission electron microscopy (TEM), proximity ligation assay (PLA), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, immunofluorescence staining, and Western blotting. The mitochondrial membrane potential, cell apoptosis, cytotoxicity, and subcellular Ca2+ localization in INS-1 cells were detected using a JC-1 probe, flow cytometry, and an lactate dehydrogenase kit.
Results:
PDZD8 expression was up-regulated in the islets of HFD mice and PA-treated pancreatic β-cells. PDZD8 knockdown markedly shortened MAM perimeter, suppressed the expression of MAM-related proteins IP3R1, glucose-regulated protein 75 (GRP75), and VDAC1, inhibited the interaction between VDAC1 and IP3R1, alleviated mitochondrial dysfunction and ER stress, reduced the expression of ER stress-related proteins, and decreased apoptosis while increased proliferation of pancreatic β-cells. Additionally, PDZD8 knockdown alleviated Ca2+ flow into the mitochondria and decreased cyclophilin D (Cypd) expression. Cypd overexpression alleviated the promoting effect of PDZD8 knockdown on the apoptosis of β-cells.
Conclusion
PDZD8 knockdown inhibited pancreatic β-cell death in DM by alleviated ER-mitochondria contact and the flow of Ca2+ into the mitochondria.
3.Comparison of safety and efficacy of robot assistance versus conventional freehand methods in the upper cervical spine surgery
Jian CHEN ; Qingqing LI ; Shujie ZHAO ; Mengyuan WU ; Zihan ZHOU ; Jiayun LIU ; Peng GAO ; Jin FAN ; Xiaojian CAO ; Yongxin REN ; Weihua CAI ; Lipeng YU ; Guoyong YIN ; Wei ZHOU
Chinese Journal of Orthopaedics 2024;44(8):578-586
Objective:To evaluate the impact of orthopedic robotic assistance and conventional freehand methods on surgical strategies, the safety of pedicle screw placement, and clinical efficacy in patients with upper cervical spine diseases.Methods:From January 2017 to March 2023, a total of 63 cases with upper cervical spine disease, were divided into two groups based on the screw placement technique: the robot-assisted pedicle screw placement (RA) group (41 cases) and the conventional freehand pedicle screw placement (CF) group (22 cases), were retrospectively included. These patients in the RA and CF groups underwent two types of posterior cervical surgery, including occipitocervical fusion (9 cases and 8 cases) and fixation and fusion of atlantoaxial and distal vertebrae (32 cases and 14 cases). The outcome parameters, including the disease course, surgical time, intraoperative blood loss, fluoroscopy frequency, radiation dose, hospital stay, treatment costs, complications, the rate of the pedicle screw placement, accuracy of upper cervical pedicle screw placement, and the risk factors that possibly affected the accuracy were recorded and analyzed. Postoperative follow-up was conducted for at least 6 months, and the efficacy of patients was assessed using imaging parameters, ASIS classification, VAS, and JOA scores.Results:Both groups had no screw-related complications and no spinal cord or vertebral artery injuries. In the RA group, the pedicle screw placement rates for the patients with occipitocervical fusion, and fixation and fusion of atlantoaxial and distal vertebrae were 100% (48/48) and 89.6% (138/154), respectively, far exceeding the placement rate in the CF group 42.9% (18/42) and 78.3% (54/69) (χ 2=37.403, P<0.001; χ 2=5.128, P=0.024). The fluoroscopic exposure dose and operation time of the two types of surgical patients in the RA group were both higher than those in the CF group ( P<0.05). Compared with the CF group, the accuracy of C 1 screws in the RA group increased from 42% (11/26) to 80% (51/64), with statistical significance (χ 2=13.342, P=0.004); while the accuracy of C 2 screws improved from 77% (33/43) to 88% (63/72) with no statistical difference (χ 2=2.863, P=0.413). Non-parametric correlation analysis found a significant correlation between the accuracy of C 1 and C 2 pedicle screw placement and the order of guide wire insertion in the RA group ( r=0.580, P<0.001; r=0.369, P=0.001). Postoperatively, both groups showed significant differences in cervicomedullary angle (CMA), Chamberlain angle (CL), McGregor angle, Boogard angle, Bull angle, clivus-canal angle (CCA), occipitocervical (C 0-C 2) angle, posterior occipitocervical angle (POCA), C 2-C 7 angle, and anterior atlantodental interval (ADI) ( P<0.05). The ASIA classification improved to varying degrees for both groups postoperatively, but there were no statistically significant differences between preoperative, postoperative, and last follow-up evaluations. VAS and JOA scores significantly improved for both groups postoperatively and at the last follow-up ( P<0.05). Conclusion:Both orthopedic robotic-assisted and conventional freehand pedicle screw placement techniques achieved satisfactory therapeutic effects in the treatment of upper cervical spine diseases. The orthopedic robot can effectively ensure the accuracy of upper cervical pedicle screw placement, the increase placement rate of pedicle screws in the upper cervical spine, and reduce fluoroscopy exposure. However, it is necessary to avoid the vertebral displacement caused by the priority insertion of the guide needle, which may affect the accuracy of subsequent planning.
4.Clinical efficacy of robot-assisted and fluoroscopy-assisted minimally invasive transforaminal lumbar interbody fusion
Chenyuan WANG ; Jin FAN ; Guoyong YIN ; Yongxin REN ; Qingqing LI ; Lipeng YU
Chinese Journal of Orthopaedics 2024;44(13):858-865
Objective:To compare the clinical efficacy of robotic-assisted and fluoroscopy-assisted minimally invasive transforaminal lumbar interbody fusion (MIS-TLIF).Methods:A total of 27 patients with lumbar degenerative disease receiving robot-assisted MIS-TLIF (robot-assisted group) treatment in the First Affiliated Hospital of Nanjing Medical University from May 2020 to September 2021 were retrospectively analyzed, including 9 males and 18 females, aged 61.00±9.11 years (range, 41-71 years). Twenty-seven patients who received fluoroscopic-assisted MIS-TLIF (fluoroscopic-assisted group) during the same period were selected as controls, including 16 males and 11 females, aged 56.70±11.97 years (range, 32-76 years). Operation time, intraoperative bleeding, radiation exposure time, postoperative drainage, hospitalization time, visual analogue scale (VAS) for pain, Oswestry disability index (ODI), accuracy of pedicle screw placement, and postoperative complications were recorded. The learning curve of the robot-assisted group was drawn based on the amount of surgery and the operation time by fitting the logarithmic curve.Results:All patients successfully completed the operation and were followed up for 15.44±3.89 months (range, 12-24 months). The operation time, drainage volume, and hospitalization time in the robot-assisted group were 181.44±36.43 min, 43.70±22.04 ml, and 5.04±1.40 d, respectively, which were smaller than 223.22±59.40 min, 74.63±71.86 ml, 6.59±3.04 d in the fluoroscopy-assisted group, and the differences were statistically significant ( P<0.05). The radiation exposure time in robot-assisted group was 77.78±9.81 s, which was larger than fluoroscopy-assisted group (63.78±17.70 s). There were statistically significant differences in lumbar VAS scores between the two groups before and after surgery ( P<0.05), 3 days after operation and the last follow-up was smaller than those before operation. The VAS score on postoperative day 3 in the robot-assisted group was 2.52±0.98, which was less than 3.07±0.87 in the fluoroscopically-assisted group ( t=0.294, P=0.032). In both groups, 108 pedicle screws were placed, and the accuracy of nail placement in the robot-assisted group was 93.5% (101/108), which was greater than that in the fluoroscopically-assisted group 77.8% (84/108), and the difference was statistically significant (χ 2=11.821, P=0.008). By fitting a logarithmic curve to describe the relationship between the number of operations and the operation time of the robotic-assisted group of operators, the results showed that the operation time decreased with the increase of the number of operations, and the operation time fluctuated greatly in the first 10 cases, and then gradually shortened and stabilized after 10 operations. Conclusion:Robot-assisted MIS-TLIF can improve the accuracy of pedicle screw placement, improve the early postoperative pain and shorten the learning curve.
5.PDZD8 Augments Endoplasmic Reticulum-Mitochondria Contact and Regulates Ca2+ Dynamics and Cypd Expression to Induce Pancreatic β-Cell Death during Diabetes
Yongxin LIU ; Yongqing WEI ; Xiaolong JIN ; Hongyu CAI ; Qianqian CHEN ; Xiujuan ZHANG
Diabetes & Metabolism Journal 2024;48(6):1058-1072
Background:
Diabetes mellitus (DM) is a chronic metabolic disease that poses serious threats to human physical and mental health worldwide. The PDZ domain-containing 8 (PDZD8) protein mediates mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) formation in mammals. We explored the role of PDZD8 in DM and investigated its potential mechanism of action.
Methods:
High-fat diet (HFD)- and streptozotocin-induced mouse DM and palmitic acid (PA)-induced insulin 1 (INS-1) cell models were constructed. PDZD8 expression was detected using immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. MAM formation, interactions between voltage-dependent anion-selective channel 1 (VDAC1) and inositol 1,4,5-triphosphate receptor type 1 (IP3R1), pancreatic β-cell apoptosis and proliferation were detected using transmission electron microscopy (TEM), proximity ligation assay (PLA), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, immunofluorescence staining, and Western blotting. The mitochondrial membrane potential, cell apoptosis, cytotoxicity, and subcellular Ca2+ localization in INS-1 cells were detected using a JC-1 probe, flow cytometry, and an lactate dehydrogenase kit.
Results:
PDZD8 expression was up-regulated in the islets of HFD mice and PA-treated pancreatic β-cells. PDZD8 knockdown markedly shortened MAM perimeter, suppressed the expression of MAM-related proteins IP3R1, glucose-regulated protein 75 (GRP75), and VDAC1, inhibited the interaction between VDAC1 and IP3R1, alleviated mitochondrial dysfunction and ER stress, reduced the expression of ER stress-related proteins, and decreased apoptosis while increased proliferation of pancreatic β-cells. Additionally, PDZD8 knockdown alleviated Ca2+ flow into the mitochondria and decreased cyclophilin D (Cypd) expression. Cypd overexpression alleviated the promoting effect of PDZD8 knockdown on the apoptosis of β-cells.
Conclusion
PDZD8 knockdown inhibited pancreatic β-cell death in DM by alleviated ER-mitochondria contact and the flow of Ca2+ into the mitochondria.
6.PDZD8 Augments Endoplasmic Reticulum-Mitochondria Contact and Regulates Ca2+ Dynamics and Cypd Expression to Induce Pancreatic β-Cell Death during Diabetes
Yongxin LIU ; Yongqing WEI ; Xiaolong JIN ; Hongyu CAI ; Qianqian CHEN ; Xiujuan ZHANG
Diabetes & Metabolism Journal 2024;48(6):1058-1072
Background:
Diabetes mellitus (DM) is a chronic metabolic disease that poses serious threats to human physical and mental health worldwide. The PDZ domain-containing 8 (PDZD8) protein mediates mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) formation in mammals. We explored the role of PDZD8 in DM and investigated its potential mechanism of action.
Methods:
High-fat diet (HFD)- and streptozotocin-induced mouse DM and palmitic acid (PA)-induced insulin 1 (INS-1) cell models were constructed. PDZD8 expression was detected using immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. MAM formation, interactions between voltage-dependent anion-selective channel 1 (VDAC1) and inositol 1,4,5-triphosphate receptor type 1 (IP3R1), pancreatic β-cell apoptosis and proliferation were detected using transmission electron microscopy (TEM), proximity ligation assay (PLA), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, immunofluorescence staining, and Western blotting. The mitochondrial membrane potential, cell apoptosis, cytotoxicity, and subcellular Ca2+ localization in INS-1 cells were detected using a JC-1 probe, flow cytometry, and an lactate dehydrogenase kit.
Results:
PDZD8 expression was up-regulated in the islets of HFD mice and PA-treated pancreatic β-cells. PDZD8 knockdown markedly shortened MAM perimeter, suppressed the expression of MAM-related proteins IP3R1, glucose-regulated protein 75 (GRP75), and VDAC1, inhibited the interaction between VDAC1 and IP3R1, alleviated mitochondrial dysfunction and ER stress, reduced the expression of ER stress-related proteins, and decreased apoptosis while increased proliferation of pancreatic β-cells. Additionally, PDZD8 knockdown alleviated Ca2+ flow into the mitochondria and decreased cyclophilin D (Cypd) expression. Cypd overexpression alleviated the promoting effect of PDZD8 knockdown on the apoptosis of β-cells.
Conclusion
PDZD8 knockdown inhibited pancreatic β-cell death in DM by alleviated ER-mitochondria contact and the flow of Ca2+ into the mitochondria.
7.PDZD8 Augments Endoplasmic Reticulum-Mitochondria Contact and Regulates Ca2+ Dynamics and Cypd Expression to Induce Pancreatic β-Cell Death during Diabetes
Yongxin LIU ; Yongqing WEI ; Xiaolong JIN ; Hongyu CAI ; Qianqian CHEN ; Xiujuan ZHANG
Diabetes & Metabolism Journal 2024;48(6):1058-1072
Background:
Diabetes mellitus (DM) is a chronic metabolic disease that poses serious threats to human physical and mental health worldwide. The PDZ domain-containing 8 (PDZD8) protein mediates mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) formation in mammals. We explored the role of PDZD8 in DM and investigated its potential mechanism of action.
Methods:
High-fat diet (HFD)- and streptozotocin-induced mouse DM and palmitic acid (PA)-induced insulin 1 (INS-1) cell models were constructed. PDZD8 expression was detected using immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. MAM formation, interactions between voltage-dependent anion-selective channel 1 (VDAC1) and inositol 1,4,5-triphosphate receptor type 1 (IP3R1), pancreatic β-cell apoptosis and proliferation were detected using transmission electron microscopy (TEM), proximity ligation assay (PLA), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, immunofluorescence staining, and Western blotting. The mitochondrial membrane potential, cell apoptosis, cytotoxicity, and subcellular Ca2+ localization in INS-1 cells were detected using a JC-1 probe, flow cytometry, and an lactate dehydrogenase kit.
Results:
PDZD8 expression was up-regulated in the islets of HFD mice and PA-treated pancreatic β-cells. PDZD8 knockdown markedly shortened MAM perimeter, suppressed the expression of MAM-related proteins IP3R1, glucose-regulated protein 75 (GRP75), and VDAC1, inhibited the interaction between VDAC1 and IP3R1, alleviated mitochondrial dysfunction and ER stress, reduced the expression of ER stress-related proteins, and decreased apoptosis while increased proliferation of pancreatic β-cells. Additionally, PDZD8 knockdown alleviated Ca2+ flow into the mitochondria and decreased cyclophilin D (Cypd) expression. Cypd overexpression alleviated the promoting effect of PDZD8 knockdown on the apoptosis of β-cells.
Conclusion
PDZD8 knockdown inhibited pancreatic β-cell death in DM by alleviated ER-mitochondria contact and the flow of Ca2+ into the mitochondria.
8.Five new terpenoids from Viburnum odoratissimum var. sessiliflorum.
Yang LI ; Yajiao JIAN ; Fan XU ; Yongxin LUO ; Zhixuan LI ; Yi OU ; Yan WEN ; Jingwei JIN ; Chuanrui ZHANG ; Lishe GAN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(4):298-307
Five new terpenoids, including two vibsane-type diterpenoids (1, 2) and three iridoid allosides (3-5), together with eight known ones, were isolated from the leaves and twigs of Viburnum odoratissimum var.sessiliflorum. Their planar structures and relative configurations were determined by spectroscopic methods, especially 2D NMR techniques. The sugar moieties of the iridoids were confirmed as β-D-allose by GC analysis after acid hydrolysis and acetylation. The absolute configurations of neovibsanin Q (1) and dehydrovibsanol B (2) were determined by quantum chemical calculation of their theoretical electronic circular dichroism (ECD) spectra and Rh2(OCOCF3)4-induced ECD analysis. The anti-inflammatory activities of compounds 1, 3, 4, and 5 were evaluated using an LPS-induced RAW264.7 cell model. Compounds 3suppressed the release of NO in a dose-dependent manner, with an IC50 value of 55.64 μmol·L-1. The cytotoxicities of compounds 1-5 on HCT-116 cells were assessed and the results showed that compounds 2 and 3 exhibited moderate inhibitory activities with IC50 values of 13.8 and 12.3 μmol·L-1, respectively.
Terpenes/pharmacology*
;
Viburnum/chemistry*
;
Molecular Structure
;
Diterpenes/chemistry*
;
Plant Leaves/chemistry*
9.A highly sensitive bio-barcode immunoassay for multi-residue detection of organophosphate pesticides based on fluorescence anti-quenching
Xu LINGYUAN ; Zhang XIUYUAN ; El-Aty A.M.ABD ; Wang YUANSHANG ; Cao ZHEN ; Jia HUIYAN ; Salvador J.-PABLO ; Hacimuftuoglu AHMET ; Cui XUEYAN ; Zhang YUDAN ; Wang KUN ; She YONGXIN ; Jin FEN ; Zheng LUFEI ; Pujia BAIMA ; Wang JING ; Jin MAOJUN ; D.Hammock BRUCE
Journal of Pharmaceutical Analysis 2022;12(4):637-644
Balancing the risks and benefits of organophosphate pesticides(OPs)on human and environmental health relies partly on their accurate measurement.A highly sensitive fluorescence anti-quenching multi-residue bio-barcode immunoassay was developed to detect OPs(triazophos,parathion,and chlorpyrifos)in apples,turnips,cabbages,and rice.Gold nanoparticles were functionalized with monoclonal antibodies against the tested OPs.DNA oligonucleotides were complementarily hybridized with an RNA fluorescent label for signal amplification.The detection signals were generated by DNA-RNA hybridization and ribonuclease H dissociation of the fluorophore.The resulting fluorescence signal en-ables multiplexed quantification of triazophos,parathion,and chlorpyrifos residues over the concen-tration range of 0.01-25,0.01-50,and 0.1-50 ng/mL with limits of detection of 0.014,0.011,and 0.126 ng/mL,respectively.The mean recovery ranged between 80.3%and 110.8%with relative standard deviations of 7.3%-17.6%,which correlate well with results obtained by liquid chromatography-tandem mass spectrometry(LC-MS/MS).The proposed bio-barcode immunoassay is stable,reproducible and reliable,and is able to detect low residual levels of multi-residue OPs in agricultural products.
10.Clinical guideline for spinal reconstruction of osteoporotic thoracolumbar fracture in elderly patients (version 2022)
Tao SUI ; Jian CHEN ; Zhenfei HUANG ; Zhiyi HU ; Weihua CAI ; Lipeng YU ; Xiaojian CAO ; Wei ZHOU ; Qingqing LI ; Jin FAN ; Qian WANG ; Pengyu TANG ; Shujie ZHAO ; Lin CHEN ; Zhiming CUI ; Wenyuan DING ; Shiqing FENG ; Xinmin FENG ; Yanzheng GAO ; Baorong HE ; Jianzhong HUO ; Haijun LI ; Jun LIU ; Fei LUO ; Chao MA ; Zhijun QIAO ; Qiang WANG ; Shouguo WANG ; Xiaotao WU ; Nanwei XU ; Jinglong YAN ; Zhaoming YE ; Feng YUAN ; Jishan YUAN ; Jie ZHAO ; Xiaozhong ZHOU ; Mengyuan WU ; Yongxin REN ; Guoyong YIN
Chinese Journal of Trauma 2022;38(12):1057-1066
Osteoporotic thoracolumbar fracture in the elderly will seriously reduce their quality of life and life expectancy. For osteoporotic thoracolumbar fracture in the elderly, spinal reconstruction is necessary, which should comprehensively consider factors such as the physical condition, fracture type, clinical characteristics and osteoporosis degree. While there lacks relevant clinical norms or guidelines on selection of spinal reconstruction strategies. In order to standardize the concept of spinal reconstruction for osteoporotic thoracolumbar fracture in the elderly, based on the principles of scientificity, practicality and progressiveness, the authors formulated the Clinical guideline for spinal reconstruction of osteoporotic thoracolumbar fracture in elderly patients ( version 2022), in which suggestions based on evidence of evidence-based medicine were put forward upon 10 important issues related to the fracture classification, non-operative treatment strategies and surgical treatment strategies in spinal reconstruction after osteoporosis thoracolumbar fracture in the elderly, hoping to provide a reference for clinical treatment.

Result Analysis
Print
Save
E-mail