1.Omics for deciphering oral microecology.
Yongwang LIN ; Xiaoyue LIANG ; Zhengyi LI ; Tao GONG ; Biao REN ; Yuqing LI ; Xian PENG
International Journal of Oral Science 2024;16(1):2-2
The human oral microbiome harbors one of the most diverse microbial communities in the human body, playing critical roles in oral and systemic health. Recent technological innovations are propelling the characterization and manipulation of oral microbiota. High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes. New long-read platforms improve genome assembly from complex samples. Single-cell genomics provides insights into uncultured taxa. Advanced imaging modalities including fluorescence, mass spectrometry, and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution. Fluorescence techniques link phylogenetic identity with localization. Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification. Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches. Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly, gene expression, metabolites, microenvironments, virulence mechanisms, and microbe-host interfaces in the context of health and disease. However, significant knowledge gaps persist regarding community origins, developmental trajectories, homeostasis versus dysbiosis triggers, functional biomarkers, and strategies to deliberately reshape the oral microbiome for therapeutic benefit. The convergence of sequencing, imaging, cultureomics, synthetic systems, and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict, prevent, diagnose, and treat associated oral diseases.
Humans
;
Phylogeny
;
Biomimetics
;
Dysbiosis
;
Homeostasis
;
Mass Spectrometry
2.Evaluation of the curative effect of traditional Chinese medicine bone-setting technique in the treatment of knee osteoarthritis
Xi LI ; Jian ZHANG ; Guohui LIU ; Yunhao LIU ; Zekun ZHANG ; Tianci GAO ; Jingxi WANG ; Yongwang ZHANG ; Shilin YIN ; Lu LIU ; Liqing QI ; Shuangqing DU
The Journal of Practical Medicine 2024;40(17):2495-2502
Objective To observe the clinical effect of traditional Chinese medicine bone-setting technique using spinal,pelvi-lower extremity line to treat patients with knee osteoarthritis(KOA).Methods 426 patients with KOA were all from the First Affiliated Hospital of Hebei University of Traditional Chinese Medicine.They were randomly divided into experimental group(384 cases,57 cases of elimination,shedding and termination)by computer generated sequence.Traditional Chinese bone setting techniques were applied with spinal-pelvic-lower limb force line(divided into three parts:lumbar fixed point reduction method,hip joint push-pull and extension method and knee peripheral tendon recovery method every 3 days.2 weeks)treatment;The control group was the waiting treatment group(48 cases,6 cases were eliminated,abscission,termination),which was only used for clinical observation for 2 weeks.The main outcome index was WOMAC pain score.Secondary outcome measures were WOMAC stiffness score,functional score,standardized score and quality of life score(SF-12).The test time points were baseline,2 weeks after enrollment,and follow-up(14 weeks after enrollment).The control group was at baseline and 2 weeks after enrollment.Results Compared with baseline,WOMAC pain score,stiffness score,functional score and standardized score were all decreased in 2 groups 2 weeks after enrollment(P<0.05),but the experimental group was significantly decreased compared with the control group(P<0.001).SF-12 quality of life scores were all higher than before(P<0.001),but the experimental group was significantly higher than the control group(P<0.001).At follow-up,compared with 2 weeks after enrollment,WOMAC pain scores were increased(P<0.001),WOMAC stiffness,joint function and standardized scores were decreased(P<0.001),and SF-12 scores were increased(P<0.001).Conclusion The use of spinal-pelvi-lower extremity line of traditional Chinese medicine bone-setting technique in the treatment of KOA is effective in improving the knee joint function and improving the quality of life of patients,but the short-term effect of pain relief is good,and the long-term effect is not good.Its safety is good,and it can be considered in clinical application for KOA patients with joint dysfunction as the main manifestation.
3.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
4.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
5.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
6.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
7.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
8.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
9.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.
10.Omics for deciphering oral microecology
Lin YONGWANG ; Liang XIAOYUE ; Li ZHENGYI ; Gong TAO ; Ren BIAO ; Li YUQING ; Peng XIAN
International Journal of Oral Science 2024;16(2):197-207
The human oral microbiome harbors one of the most diverse microbial communities in the human body,playing critical roles in oral and systemic health.Recent technological innovations are propelling the characterization and manipulation of oral microbiota.High-throughput sequencing enables comprehensive taxonomic and functional profiling of oral microbiomes.New long-read platforms improve genome assembly from complex samples.Single-cell genomics provides insights into uncultured taxa.Advanced imaging modalities including fluorescence,mass spectrometry,and Raman spectroscopy have enabled the visualization of the spatial organization and interactions of oral microbes with increasing resolution.Fluorescence techniques link phylogenetic identity with localization.Mass spectrometry imaging reveals metabolic niches and activities while Raman spectroscopy generates rapid biomolecular fingerprints for classification.Culturomics facilitates the isolation and cultivation of novel fastidious oral taxa using high-throughput approaches.Ongoing integration of these technologies holds the promise of transforming our understanding of oral microbiome assembly,gene expression,metabolites,microenvironments,virulence mechanisms,and microbe-host interfaces in the context of health and disease.However,significant knowledge gaps persist regarding community origins,developmental trajectories,homeostasis versus dysbiosis triggers,functional biomarkers,and strategies to deliberately reshape the oral microbiome for therapeutic benefit.The convergence of sequencing,imaging,cultureomics,synthetic systems,and biomimetic models will provide unprecedented insights into the oral microbiome and offer opportunities to predict,prevent,diagnose,and treat associated oral diseases.

Result Analysis
Print
Save
E-mail