1.In Vitro and in vivo Component Analysis of Total Phenolic Acids from Gei Herba and Its Effect on Promoting Acute Wound Healing and Inhibiting Scar Formation
Xixian KONG ; Guanghuan TIAN ; Tong WU ; Shaowei HU ; Jie ZHAO ; Fuzhu PAN ; Jingtong LIU ; Yong DENG ; Yi OUYANG ; Hongwei WU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):156-167
ObjectiveBased on ultra performance liquid chromatography-quadrupole-electrostatic field orbital trap high-resolution mass spectrometry(UPLC-Q-Orbitrap-MS), to identify the in vivo and in vitro chemical components of total phenolic acids in Gei Herba(TPAGH), and to clarify the pharmacological effects and potential mechanisms of the effective part in promoting acute wound healing and inhibiting scar formation. MethodsUPLC-Q-Orbitrap-MS was used to identify the chemical components of TPAGH and ingredients absorbed in vivo after topical administration. A total of 120 ICR mice were randomly divided into the model group, recombinant human epidermal growth factor(rhEGF) group(4 mg·kg-1), and low, medium, and high dose groups of TPAGH(3.5, 7, 14 mg·kg-1), with 24 mice in each group. A full-thickness skin excision model was constructed, and each administration group was coated with the drug at the wound site, and the model group was treated with an equal volume of normal saline, the treatment was continued for 30 days, during which 8 mice from each group were sacrificed on days 6, 12, and 30. The healing of the wounds in the mice was observed, and histopathological changes in the skin tissues were dynamically observed by hematoxylin-eosin(HE), Masson, and Sirius red staining, and enzyme-linked immunosorbent assay(ELISA) was used to dynamically measure the contents of interleukin-6(IL-6), tumor necrosis factor-α(TNF-α), vascular endothelial growth factor A(VEGFA), matrix metalloproteinase(MMP)-3 and MMP-9 in skin tissues. Network pharmacology was used to predict the targets related to the promotion of acute wound healing and the inhibition of scar formation by TPAGH, and molecular docking of key components and targets was performed. Gene Ontology(GO) biological process analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were carried out for the related targets, so as to construct a network diagram of herbal material-compound-target-pathway-pharmacological effect-disease for further exploring its potential mechanisms. ResultsA total of 146 compounds were identified in TPAGH, including 28 phenylpropanoids, 31 tannins, 23 triterpenes, 49 flavonoids, and 15 others, and 16 prototype components were found in the serum of mice. Pharmacodynamic results showed that, compared with the model group, the TPAGH groups showed a significant increase in relative wound healing rate and relative scar inhibition rate(P<0.05), and the number of new capillaries, number of fibroblasts, number of new skin appendages, epidermal regeneration rate, collagen deposition ratio, and Ⅲ/Ⅰ collagen ratio in the tissue were significantly improved(P<0.05, 0.01), the levels of IL-6, TNF-α, MMP-3 and MMP-9 in the skin tissues were reduced to different degrees, while the level of VEGFA was increased. Network pharmacology analysis screened 10 core targets, including tumor protein 53(TP53), sarcoma receptor coactivator(SRC), protein kinase B(Akt)1, signal transducer and activator of transcription 3(STAT3), epidermal growth factor receptor(EGFR) and so on, participating in 75 signaling pathways such as advanced glycation end-products(AGE)-receptor for AGE(AGE/RAGE) signaling pathway, phosphatidylinositol 3-kinase(PI3K)/Akt signaling pathway, mitogen-activated protein kinase(MAPK) signaling pathway. Molecular docking confirmed that the key components genistein, geraniin, and casuariin had good binding ability to TP53, SRC, Akt1, STAT3 and EGFR. ConclusionThis study comprehensively reflects the chemical composition of TPAGH and the absorbed components after topical administration through UPLC-Q-Orbitrap-MS. TPAGH significantly regulates key indicators of skin healing and tissue reconstruction, thereby clarifying its role in promoting acute wound healing and inhibiting scar formation. By combining in vitro and in vivo component identification with network pharmacology, the study explores how key components may bind to targets such as TP53, Akt1 and EGFR, exerting therapeutic effects through related pathways such as immune inflammation and vascular regeneration.
2.Five new triterpenoid saponins from the kernels of Momordica cochinchinensis
Ru DING ; Jia-qi WANG ; Yi-yang LUO ; Yong-long HAN ; Xiao-bo LI ; Meng-yue WANG
Acta Pharmaceutica Sinica 2025;60(2):442-448
Five saponins were isolated from the kernels of
3.Exploring mechanism of Porana racemosa Roxb. in treating rheumatoid arthritis based on integration of network pharmacology and molecular docking combined with experimental validation
Chen-yu YE ; Ning LI ; Yin-zi CHEN ; Tong QU ; Jing HU ; Zhi-yong CHEN ; Hui REN
Acta Pharmaceutica Sinica 2025;60(1):117-129
Through network pharmacology and molecular docking technology, combined with
4.Clematichinenoside AR protects bone marrow mesenchymal stem cells from hypoxia-induced apoptosis by maintaining mitochondrial homeostasis.
Zi-Tong ZHAO ; Peng-Cheng TU ; Xiao-Xian SUN ; Ya-Lan PAN ; Yang GUO ; Li-Ning WANG ; Yong MA
China Journal of Chinese Materia Medica 2025;50(5):1331-1339
This study aims to elucidate the role and mechanism of clematichinenoside AR(CAR) in protecting bone marrow mesenchymal stem cells(BMSCs) from hypoxia-induced apoptosis. BMSCs were isolated by the bone fragment method and identified by flow cytometry. Cells were cultured under normal conditions(37℃, 5% CO_2) and hypoxic conditions(37℃, 90% N_2, 5% CO_2) and treated with CAR. The BMSCs were classified into eight groups: control(normal conditions), CAR(normal conditions + CAR), hypoxia 24 h, hypoxia 24 h + CAR, hypoxia 48 h, hypoxia 48 h + CAR, hypoxia 72 h, and hypoxia 72 h + CAR. The cell counting kit-8(CCK-8) assay and terminal-deoxynucleoitidyl transferase mediated nick end labeling(TUNEL) were employed to measure cell proliferation and apoptosis, respectively. The number of mitochondria and mitochondrial membrane potential were measured by MitoTracker®Red CM-H2XRo staining and JC-1 staining, respectively. The level of reactive oxygen species(ROS) was measured with the DCFH-DA fluorescence probe. The protein levels of B-cell lymphoma-2 associated X protein(BAX), caspase-3, and optic atrophy 1(OPA1) were determined by Western blot. The results demonstrated that CAR significantly increased cell proliferation. Compared with the control group, the hypoxia groups showed increased apoptosis rates, reduced mitochondria, elevated ROS levels, decreased mitochondrial membrane potential, upregulated expression of BAX and caspase-3, and downregulated expression of OPA1. In comparison to the corresponding hypoxia groups, CAR intervention significantly decreased the apoptosis rate, increased mitochondria, reduced ROS levels, elevated mitochondrial membrane potential, downregulated the expression of BAX and caspase-3, and upregulated the expression of OPA1. Therefore, it can be concluded that CAR may exert an anti-apoptotic effect on BMSCs under hypoxic conditions by regulating OPA1 to maintain mitochondrial homeostasis.
Mesenchymal Stem Cells/metabolism*
;
Apoptosis/drug effects*
;
Mitochondria/metabolism*
;
Animals
;
Rats
;
Cell Hypoxia/drug effects*
;
Homeostasis/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Rats, Sprague-Dawley
;
Membrane Potential, Mitochondrial/drug effects*
;
Saponins/pharmacology*
;
Caspase 3/genetics*
;
Male
;
bcl-2-Associated X Protein/genetics*
;
Bone Marrow Cells/metabolism*
;
Cell Proliferation/drug effects*
;
Protective Agents/pharmacology*
;
Cells, Cultured
5.Intestinal barrier in chronic gut and liver diseases: Pathogenesis and therapeutic targets.
Yongxin ZHANG ; Yameng LIU ; Xinyu LIANG ; Yingquan WEN ; Jingjie ZHAO ; Yong HE ; Qing XIE ; Cen XIE
Acta Pharmaceutica Sinica B 2025;15(11):5515-5536
The intestinal barrier is the primary defense that separates the host from the external environment, possessing several crucial physiological functions, including nutrient digestion, absorption, and protection against potentially harmful dietary antigens and pathogenic microorganisms. Nevertheless, various factors, such as diet, medications, circadian rhythm disturbances, gut microbiota, microbial metabolites, and genetic predisposition, can disrupt the intestinal barrier. Such disruption may lead to bacterial translocation, subsequently triggering enterohepatic and systemic inflammation. Impaired intestinal barrier has been implicated in the pathogenesis of numerous diseases, particularly chronic gut and liver diseases. In this review, we will summarize the fundamental functions of intestinal barrier and discuss clinical correlations between intestinal barrier dysfunction and diseases such as colitis, colorectal cancer, and chronic liver diseases including metabolic dysfunction-associated steatohepatitis, alcohol-associated liver disease, and primary sclerosing cholangitis. Additionally, we will also highlight some potential therapeutic strategies aimed at restoring barrier integrity to improve disease management.
6.Diagnostic performance of various radiological modalities in the detection of sarcopenia within Asian populations: a systematic review
Shi Wei ANG ; Jacqueline LIEW ; Vanessa Malishree DHARMARATNAM ; Vanessa Yi Jean YIK ; Shawn KOK ; Syed AFTAB ; Cherie TONG ; Hui Bing LEE ; Shimin MAH ; Clement YAN ; Bin-Tean TEH ; Frederick H. KOH
Annals of Coloproctology 2025;41(1):27-39
Purpose:
Diagnosing sarcopenia necessitates the measurement of skeletal muscle mass. However, guidelines lack a standardized imaging modality with thresholds validated among Asians. This systematic review compared ultrasonography, computed tomography (CT), magnetic resonance imaging (MRI), and bioelectrical impedance analysis (BIA)/body composition monitoring in the detection of sarcopenia within Asian populations.
Methods:
PubMed and Embase were systematically searched for studies analyzing ultrasonography, CT, MRI, and BIA in diagnosing sarcopenia among Asians. Study quality was assessed using the Newcastle-Ottawa scale.
Results:
Pooled findings from 21,598 patients across 25 studies were examined. In receiver operating characteristic analysis, ultrasound displayed a pooled mean area under the curve (AUC) of 0.767 (95% confidence interval [CI], 0.709–0.806), with mean sensitivity of 81.1% (95% CI, 0.744–0.846) and specificity of 73.1% (95% CI, 0.648–0.774), for detecting sarcopenia in Asian populations. CT exhibited an AUC of 0.720 (sensitivity, 54.0%; specificity, 92.0%). MRI demonstrated an AUC of 0.839 (sensitivity, 67.0%; specificity, 66.0%). BIA displayed an AUC of 0.905 (95% CI, 0.842–0.968), 80.7% sensitivity (95% CI, 0.129–0.679), and 82.4% specificity (95% CI, 0.191–0.633).
Conclusion
Various modalities aid in diagnosing sarcopenia, and selection should be individualized. Although only BIA and dual-energy x-ray absorptiometry are recommended by the Asian Working Group for Sarcopenia and the European Working Group on Sarcopenia in Older People, ultrasound imaging may hold diagnostic value for sarcopenia in the Asian population. In certain groups, diagnostic use of CT and MRI is warranted. Future research can standardize and validate modality-specific thresholds and protocols within Asian populations.
7.Diagnostic performance of various radiological modalities in the detection of sarcopenia within Asian populations: a systematic review
Shi Wei ANG ; Jacqueline LIEW ; Vanessa Malishree DHARMARATNAM ; Vanessa Yi Jean YIK ; Shawn KOK ; Syed AFTAB ; Cherie TONG ; Hui Bing LEE ; Shimin MAH ; Clement YAN ; Bin-Tean TEH ; Frederick H. KOH
Annals of Coloproctology 2025;41(1):27-39
Purpose:
Diagnosing sarcopenia necessitates the measurement of skeletal muscle mass. However, guidelines lack a standardized imaging modality with thresholds validated among Asians. This systematic review compared ultrasonography, computed tomography (CT), magnetic resonance imaging (MRI), and bioelectrical impedance analysis (BIA)/body composition monitoring in the detection of sarcopenia within Asian populations.
Methods:
PubMed and Embase were systematically searched for studies analyzing ultrasonography, CT, MRI, and BIA in diagnosing sarcopenia among Asians. Study quality was assessed using the Newcastle-Ottawa scale.
Results:
Pooled findings from 21,598 patients across 25 studies were examined. In receiver operating characteristic analysis, ultrasound displayed a pooled mean area under the curve (AUC) of 0.767 (95% confidence interval [CI], 0.709–0.806), with mean sensitivity of 81.1% (95% CI, 0.744–0.846) and specificity of 73.1% (95% CI, 0.648–0.774), for detecting sarcopenia in Asian populations. CT exhibited an AUC of 0.720 (sensitivity, 54.0%; specificity, 92.0%). MRI demonstrated an AUC of 0.839 (sensitivity, 67.0%; specificity, 66.0%). BIA displayed an AUC of 0.905 (95% CI, 0.842–0.968), 80.7% sensitivity (95% CI, 0.129–0.679), and 82.4% specificity (95% CI, 0.191–0.633).
Conclusion
Various modalities aid in diagnosing sarcopenia, and selection should be individualized. Although only BIA and dual-energy x-ray absorptiometry are recommended by the Asian Working Group for Sarcopenia and the European Working Group on Sarcopenia in Older People, ultrasound imaging may hold diagnostic value for sarcopenia in the Asian population. In certain groups, diagnostic use of CT and MRI is warranted. Future research can standardize and validate modality-specific thresholds and protocols within Asian populations.
8.Diagnostic performance of various radiological modalities in the detection of sarcopenia within Asian populations: a systematic review
Shi Wei ANG ; Jacqueline LIEW ; Vanessa Malishree DHARMARATNAM ; Vanessa Yi Jean YIK ; Shawn KOK ; Syed AFTAB ; Cherie TONG ; Hui Bing LEE ; Shimin MAH ; Clement YAN ; Bin-Tean TEH ; Frederick H. KOH
Annals of Coloproctology 2025;41(1):27-39
Purpose:
Diagnosing sarcopenia necessitates the measurement of skeletal muscle mass. However, guidelines lack a standardized imaging modality with thresholds validated among Asians. This systematic review compared ultrasonography, computed tomography (CT), magnetic resonance imaging (MRI), and bioelectrical impedance analysis (BIA)/body composition monitoring in the detection of sarcopenia within Asian populations.
Methods:
PubMed and Embase were systematically searched for studies analyzing ultrasonography, CT, MRI, and BIA in diagnosing sarcopenia among Asians. Study quality was assessed using the Newcastle-Ottawa scale.
Results:
Pooled findings from 21,598 patients across 25 studies were examined. In receiver operating characteristic analysis, ultrasound displayed a pooled mean area under the curve (AUC) of 0.767 (95% confidence interval [CI], 0.709–0.806), with mean sensitivity of 81.1% (95% CI, 0.744–0.846) and specificity of 73.1% (95% CI, 0.648–0.774), for detecting sarcopenia in Asian populations. CT exhibited an AUC of 0.720 (sensitivity, 54.0%; specificity, 92.0%). MRI demonstrated an AUC of 0.839 (sensitivity, 67.0%; specificity, 66.0%). BIA displayed an AUC of 0.905 (95% CI, 0.842–0.968), 80.7% sensitivity (95% CI, 0.129–0.679), and 82.4% specificity (95% CI, 0.191–0.633).
Conclusion
Various modalities aid in diagnosing sarcopenia, and selection should be individualized. Although only BIA and dual-energy x-ray absorptiometry are recommended by the Asian Working Group for Sarcopenia and the European Working Group on Sarcopenia in Older People, ultrasound imaging may hold diagnostic value for sarcopenia in the Asian population. In certain groups, diagnostic use of CT and MRI is warranted. Future research can standardize and validate modality-specific thresholds and protocols within Asian populations.
9.Diagnostic performance of various radiological modalities in the detection of sarcopenia within Asian populations: a systematic review
Shi Wei ANG ; Jacqueline LIEW ; Vanessa Malishree DHARMARATNAM ; Vanessa Yi Jean YIK ; Shawn KOK ; Syed AFTAB ; Cherie TONG ; Hui Bing LEE ; Shimin MAH ; Clement YAN ; Bin-Tean TEH ; Frederick H. KOH
Annals of Coloproctology 2025;41(1):27-39
Purpose:
Diagnosing sarcopenia necessitates the measurement of skeletal muscle mass. However, guidelines lack a standardized imaging modality with thresholds validated among Asians. This systematic review compared ultrasonography, computed tomography (CT), magnetic resonance imaging (MRI), and bioelectrical impedance analysis (BIA)/body composition monitoring in the detection of sarcopenia within Asian populations.
Methods:
PubMed and Embase were systematically searched for studies analyzing ultrasonography, CT, MRI, and BIA in diagnosing sarcopenia among Asians. Study quality was assessed using the Newcastle-Ottawa scale.
Results:
Pooled findings from 21,598 patients across 25 studies were examined. In receiver operating characteristic analysis, ultrasound displayed a pooled mean area under the curve (AUC) of 0.767 (95% confidence interval [CI], 0.709–0.806), with mean sensitivity of 81.1% (95% CI, 0.744–0.846) and specificity of 73.1% (95% CI, 0.648–0.774), for detecting sarcopenia in Asian populations. CT exhibited an AUC of 0.720 (sensitivity, 54.0%; specificity, 92.0%). MRI demonstrated an AUC of 0.839 (sensitivity, 67.0%; specificity, 66.0%). BIA displayed an AUC of 0.905 (95% CI, 0.842–0.968), 80.7% sensitivity (95% CI, 0.129–0.679), and 82.4% specificity (95% CI, 0.191–0.633).
Conclusion
Various modalities aid in diagnosing sarcopenia, and selection should be individualized. Although only BIA and dual-energy x-ray absorptiometry are recommended by the Asian Working Group for Sarcopenia and the European Working Group on Sarcopenia in Older People, ultrasound imaging may hold diagnostic value for sarcopenia in the Asian population. In certain groups, diagnostic use of CT and MRI is warranted. Future research can standardize and validate modality-specific thresholds and protocols within Asian populations.
10.Diagnostic performance of various radiological modalities in the detection of sarcopenia within Asian populations: a systematic review
Shi Wei ANG ; Jacqueline LIEW ; Vanessa Malishree DHARMARATNAM ; Vanessa Yi Jean YIK ; Shawn KOK ; Syed AFTAB ; Cherie TONG ; Hui Bing LEE ; Shimin MAH ; Clement YAN ; Bin-Tean TEH ; Frederick H. KOH
Annals of Coloproctology 2025;41(1):27-39
Purpose:
Diagnosing sarcopenia necessitates the measurement of skeletal muscle mass. However, guidelines lack a standardized imaging modality with thresholds validated among Asians. This systematic review compared ultrasonography, computed tomography (CT), magnetic resonance imaging (MRI), and bioelectrical impedance analysis (BIA)/body composition monitoring in the detection of sarcopenia within Asian populations.
Methods:
PubMed and Embase were systematically searched for studies analyzing ultrasonography, CT, MRI, and BIA in diagnosing sarcopenia among Asians. Study quality was assessed using the Newcastle-Ottawa scale.
Results:
Pooled findings from 21,598 patients across 25 studies were examined. In receiver operating characteristic analysis, ultrasound displayed a pooled mean area under the curve (AUC) of 0.767 (95% confidence interval [CI], 0.709–0.806), with mean sensitivity of 81.1% (95% CI, 0.744–0.846) and specificity of 73.1% (95% CI, 0.648–0.774), for detecting sarcopenia in Asian populations. CT exhibited an AUC of 0.720 (sensitivity, 54.0%; specificity, 92.0%). MRI demonstrated an AUC of 0.839 (sensitivity, 67.0%; specificity, 66.0%). BIA displayed an AUC of 0.905 (95% CI, 0.842–0.968), 80.7% sensitivity (95% CI, 0.129–0.679), and 82.4% specificity (95% CI, 0.191–0.633).
Conclusion
Various modalities aid in diagnosing sarcopenia, and selection should be individualized. Although only BIA and dual-energy x-ray absorptiometry are recommended by the Asian Working Group for Sarcopenia and the European Working Group on Sarcopenia in Older People, ultrasound imaging may hold diagnostic value for sarcopenia in the Asian population. In certain groups, diagnostic use of CT and MRI is warranted. Future research can standardize and validate modality-specific thresholds and protocols within Asian populations.

Result Analysis
Print
Save
E-mail