1.Mechanism of Xielitang Against Ulcerative Colitis in Mice Based on "Intestinal Flora-bile Acid" Axis
Xiaotian WANG ; Yaning BIAO ; Yixin ZHANG ; Jian CHEN ; Ya GAO ; Yufang ZHANG ; Muqing ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(1):30-38
ObjectiveTo investigate the protective effect of Xielitang on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice and its possible mechanism. MethodsDSS was used to establish UC model. Sixty mice were randomly divided into a normal group, a model group, a sulfasalazine group (0.6 g·kg-1), and low-, medium-, and high-dose Xielitang groups (1.67, 3.34, 6.68 g·kg-1). After treatment for 42 d, the colon length was recorded, and the disease activity index (DAI) score was calculated. Enzyme-linked immunosorbent assay (ELISA) was used to detect the serum levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10). Hematoxylin-eosin (HE) staining was used to observe the pathomorphological changes of colon. Western blot was used to detect the protein expression of farnesoid X receptor (FXR), small heterodimer partner (SHP), liver receptor homolog-1 (LRH-1), cholesterol 7α-hydroxylase (CYP7A1), and fibroblast growth factor receptor 4 (FGFR4) in liver and FXR, sodium-dependent bile acid transporter (ASBT), and fibroblast growth factor 15 (FGF15) in ileum. 16S rRNA sequencing was used to analyze the intestinal flora. Moreover, ultra-high performance liquid chromatography–tandem mass spectrometry was used to detect the bile acid content. ResultsCompared with the normal group, the model group showed significantly decreased colon length, IL-10 content, α-diversity index, abundance of Firmicutes and Lactobacillus, and content of deoxycholic acid (DCA) and lithocholic acid (LCA) (P<0.01), significantly increased DAI score, IL-6 and TNF-α content, abundance of Bacteroidetes, and the content of cholic acid (CA), chenodeoxycholic acid (CDCA), and taurocholic acid (TCA) (P<0.05, P<0.01), significantly down-regulated protein expression of FXR, SHP, and FGFR4 in liver and FXR, ASBT, and FGF15 in ileum (P<0.01), and significantly up-regulated protein expression of LRH-1 and CYP7A1 in liver (P<0.01). In addition, the structure of colonic mucosa was destroyed, and inflammatory cells infiltrated in the model group. Compared with the model group, Xielitang could significantly increase the colon length, IL-10 content, α-diversity index, the abundance of Firmicutes and Lactobacillus, and DCA and LCA content (P<0.05, P<0.01), decrease DAI score, abundance of Bacteroidetes, and the content of IL-6, TNF-α, CA, CDCA, and TCA (P<0.01), up-regulate the protein expression of FXR, SHP, and FGFR4 in liver and FXR, ASBT, and FGF15 in ileum (P<0.01), and down-regulate the protein expression of LRH-1 and CYP7A1 in liver (P<0.01). The pathological damage of colonic mucosa was obviously alleviated. ConclusionXielitang protects against UC probably by regulating the "intestinal microbiota-bile acid" axis, regulating intestinal flora imbalance, and maintaining bile acid homeostasis.
2.Risk Identification Model of Coronary Artery Stenosis Constructed Based on Random Forest
Yongfeng LV ; Yujing WANG ; Leyi ZHANG ; Yixin LI ; Na YUAN ; Jing TIAN
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(1):138-146
ObjectiveTo establish a risk recognition model for coronary artery stenosis by using a machine learning method and to identify the key causative factors. MethodsPatients aged ≥18 years,diagnosed with coronary heart disease through coronary angiography from January 2013 to May 2020 in two prominent hospitals in Shanxi Province, were continuously enrolled. Logistic regression,back propagation neural network (BPNN), and random forest(RF)algorithms were used to construct models for detecting the causative factors of coronary artery stenosis. Sensitivity (TPR), specificity (TNR), accuracy (ACC), positive predictive value (PV+), negative predictive value (PV-), area under subject operating characteristic curve (AUC), and calibration curve were used to compare the discrimination and calibration performance of the models. The best model was then employed to predict the main risk variables associated with coronary stenosis. ResultsThe RF model exhibited superior comprehensive performance compared to logistic regression and BPNN models. The TPR values for logistic regression,BPNN,and RF models were 75.76%, 74.30%, and 93.70%, while ACC values were 74.05%, 72.30%, and 79.49%, respectively. The AUC values were:logistic regression 0.739 9; BPNN 0.723 1; RF 0.752 2. Manifestations such as chest pains,abnormal ST segments on ECG,ventricular premature beats with hypertension, atrial fibrillation, regional wall motion abnormalities(RWMA) by color echocardiography, aortic regurgitation(AR), pulmonary insufficiency (PI), family history of cardiovascular diseases,and body mass index(BMI)were identified as top ten important variables affecting coronary stenosis according to the RF model. ConclusionsRandom forest model shows the best comprehensive performance in identification and accurate assessment of coronary artery stenosis. The prediction of risk factors affecting coronary artery stenosis can provide a scientific basis for clinical intervention and help to formulate further diagnosis and treatment strategies so as to delay the disease progression.
3.Danggui Shaoyaosan Regulates Nrf2/SLC7A11/GPX4 Signaling Pathway to Inhibit Ferroptosis in Rat Model of Non-alcoholic Fatty Liver Disease
Xinqiao CHU ; Yaning BIAO ; Ying GU ; Meng LI ; Tiantong JIANG ; Yuan DING ; Xiaping TAO ; Shaoli WANG ; Ziheng WEI ; Zhen LIU ; Yixin ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):35-42
ObjectiveTo investigate the effect of Danggui Shaoyaosan on ferroptosis in the rat model of non-alcoholic fatty liver disease (NAFLD) and explore the underlying mechanism based on the nuclear factor E2-related factor 2 (Nrf2)/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway. MethodsThe sixty SD rats were randomly grouped as follows: control, model, Yishanfu (0.144 g·kg-1), and low-, medium-, and high-dose (2.44, 4.88, and 9.76 g·kg-1, respectively) Danggui Shaoyaosan. A high-fat diet was used to establish the rat model of NAFLD. After 12 weeks of modeling, rats were treated with corresponding agents for 4 weeks. Then, the body weight and liver weight were measured, and the liver index was calculated. At the same time, serum and liver samples were collected. The levels or activities of total cholesterol (TC), triglycerides (TG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and Fe2+ in the serum and TC, TG, free fatty acids (FFA), malondialdehyde (MDA), superoxide dismutase (SOD), glutathione peroxidase (GPX), and Fe2+ in the liver were measured. Hematoxylin-eosin staining and oil red O staining were employed to observe the pathological changes in the liver. Immunofluorescence was used to assess the reactive oxygen species (ROS) content in the liver. Mitochondrial morphology was observed by transmission electron microscopy. The protein levels of Nrf2, SLC7A11, GPX4, transferrin receptor 1 (TFR1), and divalent metal transporter 1 (DMT1) in the liver were determined by Western blot. ResultsCompared with the control group, the model group showed increases in the body weight, liver weight, liver index, levels or activities of TC, TG, ALT, AST, and Fe2+ in the serum, levels of TC, TG, FFA, MDA, Fe2+, and ROS in the liver, and protein levels of TFR1 and DMT1 in the liver (P<0.01), and decreases in the activities of SOD, GPX and the protein levels of Nrf2, SLC7A11, and GPX4 in the liver (P<0.05, P<0.01). Meanwhile, the liver tissue in the model group presented steatosis, iron deposition, mitochondrial shrinkage, and blurred or swollen mitochondrial cristae. Compared with the model group, all doses of Danggui Shaoyaosan reduced the body weight, liver weight, liver index, levels or activities of TC, TG, ALT, AST, and Fe2+ in the serum, levels of TC, TG, FFA, MDA, Fe2+, and ROS in the liver, and protein levels of TFR1 and DMT1 in the liver (P<0.01), while increasing the activities of SOD and GPX and the protein levels of Nrf2, SLC7A11, and GPX4 in the liver (P<0.01). Furthermore, Danggui Shaoyaosan alleviated steatosis, iron deposition, and mitochondrial damage in the liver. ConclusionDanggui Shaoyaosan may inhibit lipid peroxidation and ferroptosis by activating the Nrf2/SLC7A11/GPX4 signaling pathway to treat NAFLD.
4.Follow up analysis on the relationship between 24 hour movement behaviors and physical fitness in preschool children
CHEN Lanzhi, WANG Junyu, LIANG Yixin, WANG Tian, HUANG Haiquan, ZHUANG Jie
Chinese Journal of School Health 2025;46(9):1257-1261
Objective:
To explore the cross sectional and longitudinal associations between 24 hour movement behaviors and physical fitness in preschool children, and to adopt the method of equal time substitution analysis to evaluate the impact of time redistribution of different activity behaviors on physical fitness scores,so as to provide a scientific basis for promoting the health of preschool children.
Methods:
A total of 193 preschool children aged 3-6 years were selected from three Shanghai districts (Jing an, Baoshan, Jiading) from October to December 2023 by the stratified cluster random sampling method. The 24 hour movement behaviors were monitored via 7 day accelerometry, and physical fitness was measured according to the National Physical Fitness Measurement Standards (Revised 2023, preschool section). From October to December 2024, the follow up of physical fitness among preschool children used the same testing method. The comparison between groups was conducted by t-test. Compositional regression analyses evaluated the relationship of 24 hour movement behaviors and physical fitness among preschool children.
Results:
At baseline, moderate to vigorous physical activity (MVPA) time was significantly higher in boys [(84.10±25.78)min/d] than in girls [( 70.44± 25.98)min/d]; the composite physical fitness score was significantly higher in boys (71.65±8.69) than in girls (68.84±9.89), and the differences were statistically significant ( t =3.65, 2.10, both P <0.01). After adjusting for gender, age and body mass index, the results of component multiple linear regression analysis showed that MVPA time proportion was positively correlated with the composite physical fitness score at baseline among preschool children ( β =6.61), but was negatively correlated with two legged continuous hopping time at 1 year ( β =-1.12) (both P <0.05). Light physical activity (LPA) time proportion was negatively correlated with walking on the balance beam time at 1 year ( β =-4.44), and sedentary behavior (SB) time proportion was negatively correlated with the composite score of physical fitness at baseline ( β =-6.55) (both P <0.05). Isotemporal substitution analysis revealed that replacing 10 minutes of sleep (SP), SB, and LPA with MVPA increased the baseline physical fitness composite score by 0.750, 0.689 and 0.575 units, respectively; at 1 year follow up, the composite score increased by 1.440, 1.419 and 1.430 units, respectively (all P <0.05). Conversely, replacing MVPA with 10 minutes of SP, SB, and LPA,resulted in decreases in baseline physical fitness composite scores of 0.836, 0.777 and 0.669 units, and reductions of 1.613, 1.592 and 1.598 units at 1 year follow up (all P < 0.05 ).
Conclusions
Preschool children s 24 hour movement behaviors, especially MVPA, are closely related to physical health. Implementing appropriate strategies to increase physical activity and reduce sedentary time may improve the physical fitness of preschoolers.
5.Application of Taylor spatial frame for treating post-burn foot and ankle deformities in adults.
Jianming GU ; Shihao WANG ; Hui DU ; Yixin ZHOU
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(8):974-981
OBJECTIVE:
To investigate the safety and effectiveness of using the Taylor spatial frame (TSF) based on the Ilizarov tension-stress principle for treatment of post-burn foot and ankle deformities in adults.
METHODS:
A clinical data of 6 patients with post-burn foot and ankle deformities treated between April 2019 and November 2023 was retrospectively analyzed. There was 1 male and 5 females with an average age of 28.7 years (range, 20-49 years). There were 3 cases of simple ankle equinus, 2 cases of ankle equinus, midfoot rocker-bottom foot, and forefoot pronation, and 1 case of calcaneus foot and forefoot pronation. Preoperative American Orthopedic Foot and Ankle Society (AOFAS) score was 45.3±18.2, 12-Item Short-Form Health Survey (SF-12)-Physical Component Summary (PCS) score was 34.3±7.3 and Mental Component Summary (MCS) score was 50.4±8.8. Imaging examination showed tibial-calcaneal angle of (79.8±31.5)°, calcaneus-first metatarsal angle of (154.5±45.3)°, talus-first metatarsal angle of (-19.3±35.0)°. Except for 1 case with severe deformity that could not be measured, the remaining 5 cases had talus-second metatarsal angle of (40.6±16.4)°. The deformities were fixed with TSF after soft tissue release and osteotomy. Then, the residual deformities were gradually corrected according to software-calculated prescriptions. TSF was removed after maximum deformity correction and osteotomy healing. External fixation time, brace wearing time after removing the TSF, and pin tract infection occurrence were recorded. Infection severity was evaluated based on Checketts-Otterburns grading. Joint function was evaluated using AOFAS score and SF-12 PCS and MCS scores. Patient satisfaction was assessed using Likert score. Imaging follow-up measured relevant indicators to evaluate the degree of deformity correction. Deformity recurrence was observed during follow-up.
RESULTS:
The external fixation time was 103-268 days (mean, 193.5 days). The mild pin tract infections occurred during external fixation in all patients, which healed after pin tract care and oral antibiotics. No serious complication such as osteomyelitis, fractures, neurovascular injury, or skin necrosis occurred. After external fixation removal, 3 cases did not wear braces, while the remaining 3 cases wore braces continuously for 6 weeks, 8 weeks, and 3 years, respectively. All patients were followed up 13.9-70.0 months, with an average of 41.7 months. During follow-up, none of the 6 patients had recurrence of foot deformity. At 1 year after operation, the AOFAS score was 70.0±18.1, SF-12-PCS and MCS scores were 48.9±4.5 and 58.8±6.4, respectively, all showing significant improvement compared to preoperative values ( P<0.05). Imaging follow-up showed that all osteotomies healed, and all distraction cases achieved bony union at 6 months after stopping stretching. At 1 year after operation, tibial-calcaneal angle was (117.5±12.8)° and talus-first metatarsal angle was (-3.3±19.3)°, both showing significant improvement compared to preoperative values ( P<0.05). Calcaneus-first metatarsal angle was (132.0±14.4)°, which also improved compared to preoperative values but without significant difference ( P>0.05). Except for 1 case with severe deformity that could not be measured, the remaining 5 cases had talus-second metatarsal angle of (18.0±6.4)°. And there was no significant difference ( P>0.05) between pre-and post-operative data of 4 patients with complete data. At 1 year after operation, 1 patient was satisfied with effectiveness and 5 patients were very satisfied.
CONCLUSION
The TSF, by applying the Ilizarov tension-stress principle for gradual distraction and multi-planar adjustment, combined with soft tissue release and osteotomy, can effectively correct foot and ankle deformities after burns, especially equinus deformity with contracture of the posterior soft tissues of the lower leg. There are still limitations in treating cases with tight, adherent scars on the dorsum of the foot that require long-distance distraction. If necessary, a multidisciplinary approach combined with microsurgical techniques can be utilized.
Humans
;
Adult
;
Male
;
Female
;
Middle Aged
;
Retrospective Studies
;
External Fixators
;
Young Adult
;
Burns/complications*
;
Foot Deformities, Acquired/etiology*
;
Treatment Outcome
;
Ilizarov Technique/instrumentation*
6.Competitive roles of slow/delta oscillation-nesting-mediated sleep disruption under acute methamphetamine exposure in monkeys.
Xin LV ; Jie LIU ; Shuo MA ; Yuhan WANG ; Yixin PAN ; Xian QIU ; Yu CAO ; Bomin SUN ; Shikun ZHAN
Journal of Zhejiang University. Science. B 2025;26(7):694-707
Abuse of amphetamine-based stimulants is a primary public health concern. Recent studies have underscored a troubling escalation in the inappropriate use of prescription amphetamine-based stimulants. However, the neurophysiological mechanisms underlying the impact of acute methamphetamine exposure (AME) on sleep homeostasis remain to be explored. This study employed non-human primates and electroencephalogram (EEG) sleep staging to evaluate the influence of AME on neural oscillations. The primary focus was on alterations in spindles, delta oscillations, and slow oscillations (SOs) and their interactions as conduits through which AME influences sleep stability. AME predominantly diminishes sleep-spindle waves in the non-rapid eye movement 2 (NREM2) stage, and impacts SOs and delta waves differentially. Furthermore, the competitive relationships between SO/delta waves nesting with sleep spindles were selectively strengthened by methamphetamine. Complexity analysis also revealed that the SO-nested spindles had lost their ability to maintain sleep depth and stability. In summary, this finding could be one of the intrinsic electrophysiological mechanisms by which AME disrupted sleep homeostasis.
Animals
;
Methamphetamine
;
Electroencephalography
;
Male
;
Sleep/drug effects*
;
Central Nervous System Stimulants
;
Delta Rhythm/drug effects*
;
Sleep Stages/drug effects*
7.Dihydroartemisinin enhances doxorubicin-induced apoptosis of triple negative breast cancer cells by negatively regulating the STAT3/HIF-1α pathway.
Di CHEN ; Ying LÜ ; Yixin GUO ; Yirong ZHANG ; Ruixuan WANG ; Xiaoruo ZHOU ; Yuxin CHEN ; Xiaohui WU
Journal of Southern Medical University 2025;45(2):254-260
OBJECTIVES:
To investigate the effects of dihydroartemisinin (DHA) combined with doxorubicin (DOX) on proliferation and apoptosis of triple-negative breast cancer cells and explore the underlying molecular mechanism.
METHODS:
MDA-MB-231 cells were treated with 50, 100 or 150 μmol/L DHA, 0.5 μmol/L DOX, or with 50 μmol/L DHA combined with 0.5 μmol/L DOX. The changes in proliferation and survival of the treated cells were examined with MTT assay and colony-forming assay, and cell apoptosis was analyzed with flow cytometry. Western blotting was performed to detect the changes in protein expression levels of PCNA, cleaved PARP, Bcl-2, Bax, STAT3, p-STAT3, HIF-1α and survivin.
RESULTS:
The IC50 of DHA was 131.37±29.87 μmol/L in MDA-MB-231 cells. The cells with the combined treatment with DHA and DOX showed significant suppression of cell proliferation. Treatment with DHA alone induced apoptosis of MDA-MB-231 cells in a dose-dependent manner, but the combined treatment produced a much stronger apoptosis-inducing effect than both DHA and DOX alone. DHA at 150 μmol/L significantly inhibited clone formation of MDA-MB-231 cells, markedly reduced cellular expression levels of PCNA, p-STAT3, HIF-1α and survivin proteins, and obviously increased the expression level of cleaved PARP protein and the Bax/Bcl-2 ratio, and the combined treatment further reduced the expression level of p-STAT3 protein and increased the Bax/Bcl-2 ratio.
CONCLUSIONS
DHA combined with DOX produces significantly enhanced effects for inhibiting cell proliferation and inducing apoptosis in MDA-MB-231 cells possibly as result of DHA-mediated negative regulation of the STAT3/HIF-1α pathway.
Humans
;
STAT3 Transcription Factor/metabolism*
;
Apoptosis/drug effects*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Doxorubicin/pharmacology*
;
Triple Negative Breast Neoplasms/metabolism*
;
Cell Line, Tumor
;
Artemisinins/pharmacology*
;
Female
;
Cell Proliferation/drug effects*
;
Signal Transduction/drug effects*
;
Survivin
8.Cinnamic acid ameliorates doxorubicin-induced myocardial injury in mice by attenuating cardiomyocyte ferroptosis via inhibiting TLR4.
Qi YUN ; Ruoli DU ; Yuying HE ; Yixin ZHANG ; Jiahui WANG ; Hongwei YE ; Zhenghong LI ; Qin GAO
Journal of Southern Medical University 2025;45(9):1946-1958
OBJECTIVES:
To explore the mechanism of cinnamic acid (CA) for improving doxorubicin-induced myocardial injury (DIC) in mice.
METHODS:
Network pharmacology analysis was used to obtain the key targets of CA and DIC. Male C57BL/6J mice were randomized into Sham, DOX, CA (25, 50 and 100 mg/kg)+DOX, and CA+Ferrostatin-1+DOX groups, and their myocardial function and pathology were examined by echocardiography and HE staining. Serum levels of CK-MB, LDH, MDA, IL-6, TNF‑α and myocardial ROS level were detected, and the expression levels of TLR4 and ferroptosis pathway proteins in myocardial tissue were detected by Western blotting. Cultured murine cardiomyocytes (HL-1 cells) with or without transfection with a small interfering RNA targeting TLR4 (si-TLR4) were treated with DOX or Erastin, and the cellular ROS content was measured by DCFH-DA staining; the expression level of GPX4 was detected using immunofluorescence staining.
RESULTS:
Network pharmacology analysis suggested that CA may improve DIC through TLR4 signaling. DOX treatment caused obvious myocardial injury in mice, which showed significantly increased serum levels of CK-MB, LDH, MDA, IL-6, TNF-α and myocardial ROS level with decreased myocardial levels of SLC7A11 and GPX4 proteins and increased levels of TLR4 and PTGS2 proteins. All these changes in the mouse models were significantly alleviated by treatment with CA, and the mice receiving CA or ferrostatin-1 treatment exhibited increased myocardial expressions of SLC7A11 and GPX4 proteins and lowered expressions of TLR4 and PTGS2 proteins. In cultured HL-1 cells, treatment with DOX and Erastin both obviously increased intracellular ROS level and decreased cellular GPX4 expression level, and these changes were strongly attenuated by TLR4 interference.
CONCLUSIONS
CA, as a potent herbal monomer, can effectively alleviate DIC in mice by inhibiting TLR4-mediated ferroptosis.
Animals
;
Ferroptosis/drug effects*
;
Toll-Like Receptor 4/metabolism*
;
Myocytes, Cardiac/metabolism*
;
Mice, Inbred C57BL
;
Mice
;
Male
;
Doxorubicin/adverse effects*
;
Cinnamates/pharmacology*
;
Signal Transduction
;
Reactive Oxygen Species/metabolism*
9.Identify drug-drug interactions via deep learning: A real world study.
Jingyang LI ; Yanpeng ZHAO ; Zhenting WANG ; Chunyue LEI ; Lianlian WU ; Yixin ZHANG ; Song HE ; Xiaochen BO ; Jian XIAO
Journal of Pharmaceutical Analysis 2025;15(6):101194-101194
Identifying drug-drug interactions (DDIs) is essential to prevent adverse effects from polypharmacy. Although deep learning has advanced DDI identification, the gap between powerful models and their lack of clinical application and evaluation has hindered clinical benefits. Here, we developed a Multi-Dimensional Feature Fusion model named MDFF, which integrates one-dimensional simplified molecular input line entry system sequence features, two-dimensional molecular graph features, and three-dimensional geometric features to enhance drug representations for predicting DDIs. MDFF was trained and validated on two DDI datasets, evaluated across three distinct scenarios, and compared with advanced DDI prediction models using accuracy, precision, recall, area under the curve, and F1 score metrics. MDFF achieved state-of-the-art performance across all metrics. Ablation experiments showed that integrating multi-dimensional drug features yielded the best results. More importantly, we obtained adverse drug reaction reports uploaded by Xiangya Hospital of Central South University from 2021 to 2023 and used MDFF to identify potential adverse DDIs. Among 12 real-world adverse drug reaction reports, the predictions of 9 reports were supported by relevant evidence. Additionally, MDFF demonstrated the ability to explain adverse DDI mechanisms, providing insights into the mechanisms behind one specific report and highlighting its potential to assist practitioners in improving medical practice.
10.Research Progress on the Role of HMGB1 in Regulating the Function of Osteoarthritis Chondrocytes
Xin QI ; Xiaogang ZHANG ; Haiyang YU ; Xin CHEN ; Wenbo AN ; Zhipeng WANG ; Duoxian WANG ; Pengfei LUO ; Yixin CHEN ; Jiaojiao MA ; Wei QI ; Ziyang HU ; Jianjun LIU
Medical Journal of Peking Union Medical College Hospital 2024;15(1):141-146
Osteoarthritis (OA) is a chronic degenerative joint disease whose main characteristic is the destruction of articular cartilage, causing pain and disability in patients and seriously affecting their quality of life. OA can be induced by a variety of causes, and pathological changes in articular cartilage are considered to be one of the key driving factors for the occurrence of OA. High mobility group box-1 protein (HMGB1), as a non-histone protein in eukaryotic cells, can participate in regulating the inflammation and apoptosis process of OA chondrocytes, thus leading to the occurrence of OA. This article reviews the research on the mechanism of HMGB1 in OA chondrocytes, with a view to providing new ideas for the clinical prevention and treatment of OA.


Result Analysis
Print
Save
E-mail