1.Advancement in neutrophil-based drug delivery systems.
Journal of Zhejiang University. Medical sciences 2025;54(4):479-488
Neutrophils, as the most abundant immune cells in the human body, possess the inherent ability to rapidly migrate to sites of inflammation and infection. Novel drug delivery systems leveraging neutrophils capitalize on their natural targeting and phagocytic capabilities to achieve precise drug delivery. Efficient drug loading into neutrophils within neutrophil-based delivery systems can be achieved through physical adsorption, chemical conjugation, and phagocytosis. Design strategies emphasize carrier selection and targeting ligand design to enhance delivery precision. Compared to traditional drug delivery systems, neutrophil-based systems offer significant advantages, including excellent biocompatibility and strong tissue penetration. These properties can significantly improve drug bioavailability and reduce adverse reactions associated with non-target tissue accumulation. However, these systems also face several challenges that require resolution, such as difficulties in cell collection and preservation, the need for stability optimization, challenges in large-scale production, and a lengthy clinical translation cycle. In disease treatment applications, neutrophil-based drug delivery systems enable precise delivery of anti-cancer drugs to tumor sites, potentially disrupting immunosuppression of the tumor microenvironment and enhancing therapeutic efficacy. For brain diseases, their unique ability to cross the blood-brain barrier facilitates effective drug delivery. In chronic inflammatory diseases, neutrophil-based systems can precisely deliver anti-inflammatory agents to mitigate inflammation. Performance enhancements for neutrophil-based systems can be achieved by the development of novel nanomaterials and optimization of targeting ligand affinity, thereby improving the accuracy and efficiency of drug delivery. This review comprehensively explores the design strategies, advantages, challenges, and future directions of neutrophil-based drug delivery systems. It summarizes research progress in disease treatment applica-tions, aiming to offer key insights for the development of novel drug delivery systems and advance precision medicine and targeted therapy.
Humans
;
Drug Delivery Systems/methods*
;
Neutrophils
;
Phagocytosis
;
Drug Carriers
;
Blood-Brain Barrier
;
Neoplasms/drug therapy*
2.Progress on the application of system dynamics model in the field of health management.
Qiwei WU ; Huijie ZHOU ; Binyu ZHAO ; Jing SHAO
Journal of Zhejiang University. Medical sciences 2025;54(5):676-684
Health management is highly complex due to interactions across multiple levels and factors. System dynamics model (SDM) offers a holistic perspective and a dynamic analytical framework for understanding such complex systems. It has been applied across various domains of health management, including psychological interventions, chronic disease management, rehabilitation, optimization of medical services, and health policy development. By identifying key factors and pathways influencing health behaviors, determining critical targets for interventions, conducting cost-benefit analyses and process optimization, and simulating the long-term effects of health policies, SDM provides quantitative support for decision-making from individual-level interventions to macro-level policies. This article reviews the application of SDM in these four major areas within health management, discusses its advantages and limitations, and serves as a reference for researchers and practitioners aiming to utilize SDM in future studies. The goal is to advance health management toward greater personalization and precision, thereby offering stronger support for health interventions and policy development.
Humans
;
Health Policy
;
Models, Theoretical
3.Fertility management in breast cancer patients: current strategies and research advances.
Jiaojiao ZHOU ; Min JIN ; Hefeng HUANG
Journal of Zhejiang University. Medical sciences 2025;():1-11
Breast cancer patients in China tend to be diagnosed at a younger age, making fertility issues a significant clinical and societal challenge. Current evidence indicates that the fertility rate among breast cancer survivors is substantially lower than that of the general population of the same age. Both the disease itself and anti-tumor treatments-including chemotherapy, radiotherapy, endocrine therapy, targeted therapy, and immunotherapy-can adversely affect female fertility. Therefore, fertility considera-tions should be integrated into the comprehensive management of breast cancer from the time of diagnosis. Several guidelines and consensus statements have been established to direct fertility management in these patients. Clinical practice has achieved some success in fertility preservation through pharmacological, surgical, and assisted reproductive technologies, which help mitigate treatment-related damage to fertility. Nevertheless, further progress relies on multidisciplinary collaboration, particularly in addressing the ethical and legal aspects of fertility preservation. Recent advances in research on hereditary breast cancer, risk assessment, and preimplantation genetic testing for polygenic diseases offer new perspectives and directions for fertility management in breast cancer patients. This review systematically summarizes the current fertility status, existing management strategies, and cutting-edge research on healthy reproduction in breast cancer patients, with the aim of supporting the standardization of fertility management protocols.
4.Mechanism of human embryonic stem cell-derived mesenchymal stem cells on alleviating brain injury after cardiopulmonary resuscitation in swine with cardiac arrest.
Feng GE ; Jiefeng XU ; Jinjiang ZHU ; Guangli CAO ; Xuguang WANG ; Meiya ZHOU ; Tiejiang CHEN ; Mao ZHANG
Chinese Critical Care Medicine 2025;37(2):133-139
OBJECTIVE:
To investigate the mechanism of human embryonic stem cell-derived mesenchymal stem cells (hESC-MSC) in alleviating brain injury after resuscitation in swine with cardiac arrest (CA).
METHODS:
Twenty-nine healthy male large white swine were randomly divided into Sham group (n = 9), cardiopulmonary resuscitation (CPR) group (n = 10) and hESC-MSC group (n = 10). The Sham group only completed animal preparation. In CPR group and hESC-MSC group, the swine model of CA-CPR was established by inducing ventricular fibrillation for 10 minutes with electrical stimulation and CPR for 6 minutes. At 5 minutes after successful resuscitation, hESC-MSC 2.5×106/kg was injected via intravenous micropump within 1 hour in hESC-MSC group. Venous blood samples were collected before resuscitation and at 4, 8, 24, 48 and 72 hours of resuscitation. The levels of neuron specific enolase (NSE) and S100B protein (S100B) were detected by enzyme linked immunosorbent assay (ELISA). At 24, 48 and 72 hours of resuscitation, neurological deficit score (NDS) and cerebral performance category (CPC) were used to evaluate the neurological function of the animals. Three animals from each group were randomly selected and euthanized at 24, 48, and 72 hours of resuscitation, and the hippocampus tissues were quickly obtained. Immunofluorescence staining was used to detect the distribution of hESC-MSC in hippocampus. Immunohistochemical staining was used to detect the activation of astrocytes and microglia and the survival of neurons in the hippocampus. The degree of apoptosis was detected by TdT-mediated dUTP nick end labeling (TUNEL).
RESULTS:
The serum NSE and S100B levels of brain injury markers in CPR group and hESC-MSC group were significantly higher than those in Sham group at 24 hours of resuscitation, and then gradually increased. The levels of NSE and S100B in serum at each time of resuscitation in hESC-MSC group were significantly lower than those in CPR group [NSE (μg/L): 20.69±3.62 vs. 28.95±3.48 at 4 hours, 27.04±5.56 vs. 48.59±9.22 at 72 hours; S100B (μg/L): 2.29±0.39 vs. 3.60±0.73 at 4 hours, 2.38±0.15 vs. 3.92±0.50 at 72 hours, all P < 0.05]. In terms of neurological function, compared with the Sham group, the NDS score and CPC score in the CPR group and hESC-MSC group increased significantly at 24 hours of resuscitation, and then gradually decreased. The NDS and CPC scores of hESC-MSC group were significantly lower than those of CPR group at 24 hours of resuscitation (NDS: 111.67±20.21 vs. 170.00±21.79, CPC: 2.33±0.29 vs. 3.00±0.00, both P < 0.05). The expression of hESC-MSC positive markers CD73, CD90 and CD105 in the hippocampus of hESC-MSC group at 24, 48 and 72 hours of resuscitation was observed under fluorescence microscope, indicating that hESC-MSC could homing to the damaged hippocampus. In addition, compared with Sham group, the proportion of astrocytes, microglia and apoptotic index in hippocampus of CPR group were significantly increased, and the proportion of neurons was significantly decreased at 24, 48 and 72 hours of resuscitation. Compared with CPR group, the proportion of astrocytes, microglia and apoptotic index in hippocampus of hESC-MSC group decreased and the proportion of neurons increased significantly at 24 hours of resuscitation [proportion of astrocytes: (14.33±1.00)% vs. (30.78±2.69)%, proportion of microglia: (12.00±0.88)% vs. (27.89±5.68)%, apoptotic index: (12.89±3.86)% vs. (52.33±7.77)%, proportion of neurons: (39.44±3.72)% vs. (28.33±1.53)%, all P < 0.05].
CONCLUSIONS
Application of hESC-MSC at the early stage of resuscitation can reduce the brain injury and neurological dysfunction after resuscitation in swine with CA. The mechanism may be related to the inhibition of immune cell activation, reduction of cell apoptosis and promotion of neuronal survival.
Animals
;
Heart Arrest/therapy*
;
Cardiopulmonary Resuscitation
;
Swine
;
Humans
;
Male
;
Human Embryonic Stem Cells/cytology*
;
Mesenchymal Stem Cell Transplantation
;
Mesenchymal Stem Cells/cytology*
;
Phosphopyruvate Hydratase/blood*
;
Brain Injuries/therapy*
;
S100 Calcium Binding Protein beta Subunit
;
Apoptosis
;
Disease Models, Animal
5.ORP8 acts as a lipophagy receptor to mediate lipid droplet turnover.
Maomao PU ; Wenhui ZHENG ; Hongtao ZHANG ; Wei WAN ; Chao PENG ; Xuebo CHEN ; Xinchang LIU ; Zizhen XU ; Tianhua ZHOU ; Qiming SUN ; Dante NECULAI ; Wei LIU
Protein & Cell 2023;14(9):653-667
Lipophagy, the selective engulfment of lipid droplets (LDs) by autophagosomes for lysosomal degradation, is critical to lipid and energy homeostasis. Here we show that the lipid transfer protein ORP8 is located on LDs and mediates the encapsulation of LDs by autophagosomal membranes. This function of ORP8 is independent of its lipid transporter activity and is achieved through direct interaction with phagophore-anchored LC3/GABARAPs. Upon lipophagy induction, ORP8 has increased localization on LDs and is phosphorylated by AMPK, thereby enhancing its affinity for LC3/GABARAPs. Deletion of ORP8 or interruption of ORP8-LC3/GABARAP interaction results in accumulation of LDs and increased intracellular triglyceride. Overexpression of ORP8 alleviates LD and triglyceride deposition in the liver of ob/ob mice, and Osbpl8-/- mice exhibit liver lipid clearance defects. Our results suggest that ORP8 is a lipophagy receptor that plays a key role in cellular lipid metabolism.
Animals
;
Mice
;
Lipid Droplets
;
Autophagy
;
Autophagosomes
;
Homeostasis
;
Triglycerides
6.Advances in Diagnosis and Treatment of HER2-positive Non-small Cell Lung Cancer.
Chenyi REN ; He CAO ; Jing ZHENG ; Wenjia SUN ; Jianya ZHOU
Chinese Journal of Lung Cancer 2023;26(4):291-302
Lung cancer is the most common malignancy in the world and the leading cause of cancer death. Human epidermal growth factor receptor 2 (HER2) positive non-small cell lung cancer (NSCLC) refers to the NSCLC caused by mutation, amplification or overexpression of the HER2 gene, resulting in its dysfunction. HER2 is the most active receptor in the HER family and can combine with other members to form dimers, which can activate multiple signaling pathways and regulate cell proliferation, differentiation, migration and apoptosis. In NSCLC, HER2 positivity is usually considered a poor prognostic marker. At present, the diagnosis and treatment of HER2-positive NSCLC are not mature. Immunohistochemistry (IHC), next generation sequencing (NGS) and other technologies are often used to detect the positive status of HER2 mutation, amplification or overexpression. In previous studies, antitumor drugs did not show ideal therapeutic effects in HER2-positive NSCLC. However, in recent years, related researches have shown that antibody-drug conjugates (ADCs) and new tyrosine kinase inhibitors (TKIs) in targeted therapy show good antitumor activity against HER2 positive NSCLC. This article summarized the progress in diagnosis and treatment of HER2-positive NSCLC, so as to provide reference for subsequent researches.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
Lung Neoplasms/genetics*
;
Receptor, ErbB-2/genetics*
;
Mutation
;
Antineoplastic Agents/pharmacology*
;
Signal Transduction
;
Protein Kinase Inhibitors/therapeutic use*
7.Research on Management Efficiency of Hospital Low-value Consumables in Nursing Unit under Lean Management Mode.
Chengwen DONG ; Guoping TANG ; Qingli ZHOU
Chinese Journal of Medical Instrumentation 2023;47(3):341-345
Aiming at the management efficiency problems in the traditional medical low-value consumables management mode of the nursing unit, based on the perspective of supply chain management, this study uses lean management method to construct the lean management mode of low-value consumables with a whole cycle and whole process information monitoring, and analyzes the application effect of this mode. The results show that after the application of lean management mode, the low-value consumables of the nursing unit can achieve "consumables in use=priced consumables + un-priced consumables", the settlement cost is significantly reduced and its stability is high, and the efficiency of "supply-inventor-distribution" link is significantly enhanced. This model effectively improves the management efficiency of low-value consumables in the hospital, and also provides a reference for other hospitals to improve the management level of low-value consumables.
Hospitals
;
Commerce
8.Macrophage-evading and tumor-specific apoptosis inducing nanoparticles for targeted cancer therapy.
Zimo LIU ; Xuefei ZHOU ; Qi LI ; Youqing SHEN ; Tianhua ZHOU ; Xiangrui LIU
Acta Pharmaceutica Sinica B 2023;13(1):327-343
Extended circulation of anticancer nanodrugs in blood stream is essential for their clinical applications. However, administered nanoparticles are rapidly sequestered and cleared by cells of the mononuclear phagocyte system (MPS). In this study, we developed a biomimetic nanosystem that is able to efficiently escape MPS and target tumor tissues. The fabricated nanoparticles (TM-CQ/NPs) were coated with fibroblast cell membrane expressing tumor necrosis factor (TNF)-related apoptosis inducing ligand (TRAIL). Coating with this functionalized membrane reduced the endocytosis of nanoparticles by macrophages, but increased the nanoparticle uptake in tumor cells. Importantly, this membrane coating specifically induced tumor cell apoptosis via the interaction of TRAIL and its cognate death receptors. Meanwhile, the encapsulated chloroquine (CQ) further suppressed the uptake of nanoparticles by macrophages, and synergized with TRAIL to induce tumor cell apoptosis. The vigorous antitumor efficacy in two mice tumor models confirmed our nanosystem was an effective approach to address the MPS challenge for cancer therapy. Together, our TM-CQ/NPs nanosystem provides a feasible approach to precisely target tumor tissues and improve anticancer efficacy.
9.Evaluation of brain injury caused by stick type blunt instruments based on convolutional neural network and finite element method.
Haiyan LI ; Haifang LI ; Guanglong HE ; Wengang LIU ; Shihai CUI ; Lijuan HE ; Wenle LU ; Jianyu PAN ; Yiwu ZHOU
Journal of Biomedical Engineering 2022;39(2):276-284
The finite element method is a new method to study the mechanism of brain injury caused by blunt instruments. But it is not easy to be applied because of its technology barrier of time-consuming and strong professionalism. In this study, a rapid and quantitative evaluation method was investigated to analyze the craniocerebral injury induced by blunt sticks based on convolutional neural network and finite element method. The velocity curve of stick struck and the maximum principal strain of brain tissue (cerebrum, corpus callosum, cerebellum and brainstem) from the finite element simulation were used as the input and output parameters of the convolutional neural network The convolutional neural network was trained and optimized by using the 10-fold cross-validation method. The Mean Absolute Error (MAE), Mean Square Error (MSE), and Goodness of Fit ( R 2) of the finally selected convolutional neural network model for the prediction of the maximum principal strain of the cerebrum were 0.084, 0.014, and 0.92, respectively. The predicted results of the maximum principal strain of the corpus callosum were 0.062, 0.007, 0.90, respectively. The predicted results of the maximum principal strain of the cerebellum and brainstem were 0.075, 0.011, and 0.94, respectively. These results show that the research and development of the deep convolutional neural network can quickly and accurately assess the local brain injury caused by the sticks blow, and have important application value for understanding the quantitative evaluation and the brain injury caused by the sticks struck. At the same time, this technology improves the computational efficiency and can provide a basis reference for transforming the current acceleration-based brain injury research into a focus on local brain injury research.
Brain
;
Brain Injuries
;
Computer Simulation
;
Finite Element Analysis
;
Humans
;
Neural Networks, Computer
10.Practice of Refined Management of in Vitro Diagnostic Reagents Based on SPD in Hospital.
Yanmei HUANG ; Guoping TANG ; Qingli ZHOU
Chinese Journal of Medical Instrumentation 2022;46(2):230-232
The management of in vitro diagnostic reagents has always been a concern. This paper describes the application of SPD medical consumables fine management system in our hospital. Relying on the brand-new management mode, the whole process from supplier qualification certificate management, in vitro diagnostic reagent procurement management, secondary warehouse management, and then to the use process traceability was realized. The monthly cost of in vitro diagnostic reagents can be accurately counted, which effectively controls the cost of in vitro diagnostic reagents.
Hospitals
;
Indicators and Reagents

Result Analysis
Print
Save
E-mail