1.Effect and Mechanism of Schisandrae Chinensis Fructus Lignans on Behavior of Schizophrenic Mice
Jiaqi LI ; Xi CHEN ; Siwei WANG ; Qi WANG ; Yiting LIU ; Ziyan GUO ; Zilong LUN ; Chengyi ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):65-71
ObjectiveTo investigate the effects of Schisandrae Chinensis Fructus lignans on schizophrenia induced by dizocilpine maleate (MK-801) in mice and to clarify its mechanism. MethodsMale mice of 4-6 weeks old were randomized into blank, model, positive drug, and low-, medium-, and high-dose (40, 80, 160 mg·kg-1, respectively) Schisandrae Chinensis Fructus lignans groups. The blank group was administrated with distilled water, and the other groups were injected with 0.5 mg·kg-1 MK-801 to induce schizophrenia symptoms. Meanwhile, risperidone was injected at 0.2 mg·kg-1 in the positive drug group, and mice in the intervention groups were injected with corresponding drugs for 14 consecutive days. The behavioral changes of mice were observed by autonomous activity test, open field test, forced swimming test, and water maze test. The levels of dopamine (DA) and 5-hydroxytryptamine (5-HT) in the brain and tumor necrosis factor-α (TNF-α) and nuclear factor-κB (NF-κB) in peripheral blood were quantified by enzyme-linked immunosorbent assay (ELISA). The changes in the prefrontal lobe of mice were observed by hematoxylin-eosin staining, and the changes of the hippocampal tissue were observed by Nissl staining. The protein levels of silencing information regulatory factor 1 (SIRT1) and forkhead box protein O3a (FoxO3a) in the hippocampus of mice were determined by Western blot. ResultsCompared with the model group, low, medium, and high doses of Schisandrae Chinensis Fructus lignans reduced the total number of autonomous activities, total distance in the open field test, immobile time in the forced swimming test, and levels of TNF-α and NF-κB in peripheral blood (P<0.05), while increasing the number of platform crossings in the water maze test and DA and 5-HT levels in the brain tissue (P<0.05). Compared with the model group, risperidone and low, medium, and high doses of Schisandrae Chinensis Fructus lignans improve the neural cell morphology in the CA1 region, with full cells in neatly dense arrangement and exhibiting clear membrane boundary. Schisandrae Chinensis Fructus lignans inhibited the expression of SIRT 1 and FoxO3a in the hippocampus (P<0.05). ConclusionTo sum up, Schisandrae Chinensis Fructus lignans may improve the behavior of schizophrenic mice by activating the SIRT1/FoxO3a signaling pathway to exert neuroprotective effects.
2.Study on the in vivo effects of 5T magnetic resonance imaging on the dental pulp and periodontal ligament in young adults
QI Zhengnan ; CAO Yiting ; WANG Yiwei ; SONG Qingbo ; ZHANG Peirong ; SUN Shuntao ; WANG Dengbin ; TANG Zisheng
Journal of Prevention and Treatment for Stomatological Diseases 2026;34(2):139-147
Objective:
To evaluate the performance of 5T magnetic resonance imaging (MRI) in visualizing dental pulp and periodontal ligament (PDL) tissues in vivo in the young adult population, thereby providing a basis for the application of high-field MRI technology in clinical oral examinations.
Methods:
The study was approved by the Ethics Committee of the hospital. A total of 15 healthy volunteers (413 permanent teeth altogether) were recruited and underwent full-mouth 5T MRI scans. Among them, six volunteers (168 permanent teeth) also received both 3T MRI and cone-beam computed tomography (CBCT) scans. Two dental specialists independently evaluated the imaging quality of the dental pulp and PDL on the images using a 5-point Likert scale and recorded the number of detectable root canals for each tooth. Inter-rater agreement was assessed using weighted kappa statistics and intraclass correlation coefficient (ICC). Non-parametric tests were employed to compare differences in imaging performance among different tissue structures, tooth positions, and imaging modalities.
Results:
5T MRI can achieve in vivo imaging for most dental pulp tissues and partial periodontal membrane structures. There was a high level of agreement between the two raters in their imaging scores for the dental pulp and PDL (dental pulp κ = 0.934, PDL κ = 0.737). The imaging scores for dental pulp were significantly higher than those for PDL (P < 0.001), and the scores for molar dental pulp were lower than those for premolars and anterior teeth. In the multimodal comparison involving six volunteers, the raters showed good consistency in scoring dental pulp and PDL imaging across 5T MRI, 3T MRI, and CBCT, as well as in root canal counts (5T MRI for dental pulp κ = 0.971, 3T MRI for dental pulp κ = 0.933, CBCT for dental pulp κ = 0.964; 5T MRI for PDL κ = 0.625, 3T MRI for PDL κ = 0.667, CBCT for PDL κ = 0.571; ICC for root canal counts all ≥ 0.990). The imaging scores for dental pulp and PDL using 5T MRI were significantly higher than those using 3T MRI (dental pulp: P < 0.001; PDL: P = 0.022), but there was no statistically significant difference in the detection rate of the number of root canals between the two (P > 0.05). Although the imaging scores for dental pulp and PDL as well as the detection rate of the number of root canals with 5T MRI were inferior to those with CBCT (dental pulp: P < 0.001; PDL: P = 0.02; number of root canals: P < 0.05), 5T MRI can truly achieve "direct imaging" of these two soft tissues.
Conclusion
5T MRI enables effective in vivo direct imaging of dental pulp and PDL tissues in the young adult population, indicating its potential clinical application value in the diagnosis and treatment of pulp and periodontal diseases.
3.Randomized Controlled Study of Baoshen Prescription in Treating Stage Ⅳ Diabetic Nephropathy in Patients with Syndromes of Qi-Yin Deficiency and Kidney Collateral Stasis and Obstruction
Yiting QIU ; Shuangshuang HONG ; Zhiqiu LIU ; Xinru SUN ; Yuefen WANG ; Mengchao LIU ; Wenjing ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):124-131
ObjectiveTo evaluate the clinical efficacy and safety of Baoshen prescription in the treatment of stage Ⅳ diabetic nephropathy (DN) in the patients with syndromes of Qi-Yin deficiency and kidney collateral stasis and obstruction, and to explore the mechanism of this prescription delaying the disease progression. MethodsA randomized, controlled, double-blind, multicenter clinical trial was conducted, in which 94 stage Ⅳ DN patients with syndromes of Qi-Yin deficiency and kidney collateral stasis and obstruction were randomly assigned into Baoshen prescription and control groups (47 cases). The treatment lasted for 12 weeks. The primary efficacy indicators were mainly renal function indexes, including urine albumin-to-creatinine ratio (UACR), 24-hour urine total protein (24 h-UTP), serum creatinine (SCr), and estimated glomerular filtration rate (eGFR). The secondary efficacy indicators were metabolic memory of hyperglycemia, podocyte epithelial-to-mesenchymal transdifferentiation-related indexes, and TCM syndrome score. ResultsAfter 12 weeks of treatment, the Baoshen prescription group showed lowered levels of advanced glycation end products (lgAGEs), connective tissue growth factor (CTGF), type Ⅳ collagen (Col-Ⅳ), receptor of AGEs (RAGE), urinary fibroblast-specific protein-1 (FSP-1), UACR, 24 h-UTP, and glycated hemoglobin (HbAlc) (P<0.05), and an upward trend of miR-21 mRNA. The control group showed elevated levels of SCr and UREA and lowered levels of urinary FSP-1, eGFR, and HbAlc (P<0.05). After treatment, the Baoshen prescription group had lower levels of lgAGEs, CTGF, urinary FSP-1, SCr, UACR, and 24 h-UTP and higher levels of Col-Ⅳ and eGFR than the control group (P<0.05). In addition, the Baoshen prescription group showed statistically significant differences in SCr, eGFR, UACR, and 24 h-UTP before and after treatment (P<0.05). ConclusionBaoshen prescription can effectively improve the renal function, reduce the urinary protein level, and alleviate clinical symptoms in stage Ⅳ DN patients with syndromes of Qi-Yin deficiency and kidney collateral stasis and obstruction. The mechanism may be related to the metabolic memory of hyperglycemia and epithelial-to-mesenchymal transdifferentiation of podocytes.
4.Analysis of the Guidelines for Ethical Review of Clinical Research Involving Mental Disorders
Xueqin WANG ; Hongqiang SUN ; Yiting LI ; Lin LU
Chinese Medical Ethics 2025;38(1):23-30
The ethical review of clinical research involving mental disorders in the ethical governance of scientific and technological has obvious particularities, especially in the field of artificial intelligence and brain-computer interfaces which are reflected in the impact on mental autonomy, the impaired informed consent ability of participants with severe mental disorders in research, and other aspects. In addition, the stigma of illness, the use of placebo, and psychological assessment methods in clinical research have also drawn attention to the ethical review of psychiatry. In 2020, the Beijing Municipal Health Commission issued the Guidelines for Ethical Review of Clinical Research Involving Mental Disorders (Guidelines). Shen Yucun’s Psychiatry, compiled in 2023, revised the application of the Guidelines in the context of ethical governance. An analysis was conducted on the purpose and significance of its issuance and revision, its scope of application, the principal responsibility of ethical review in medical and health institutions, and the key content of ethical review in psychiatry, to improve the quality of ethical review in clinical research involving mental disorders and promote the standardized development of clinical research in psychiatry.
5.Mechanism of imperatorin in ameliorating doxorubicin resistance of breast cancer based on transcriptomics
Yiting LI ; Wei DONG ; Xinli LIANG ; Hu WANG ; Yumei QIU ; Xiaoyun DING ; Hao ZHANG ; Huiyun BAO ; Xianxi LI ; Xilan TANG
China Pharmacy 2025;36(5):529-534
OBJECTIVE To investigate the ameliorative effect and potential mechanism of imperatorin (IMP) on doxorubicin (DOX) resistance in breast cancer. METHODS The effects of maximum non-toxic concentration (100 μg/mL) of IMP combined with different concentrations of DOX (12.5, 25, 50, 75, 100 μg/mL) on the proliferation of MCF-7/DOX cells were determined by MTT method. MCF-7/DOX cells were divided into blank control group (1‰ dimethyl sulfoxide), DOX group (50 μg/mL), IMP+DOX group (100 μg/mL IMP+50 μg/mL DOX) and IMP group (100 μg/mL). mRNA and protein expressions of multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 1 in each group were measured. The relevant pathways and targets involved in the improvement of DOX resistance in breast cancer cells by IMP were screened and validated by using transcriptome sequencing technology, along with gene ontology (GO) enrichment analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. RESULTS Compared with DOX alone, the combination of IMP and DOX reduced the half inhibitory concentration of DOX on MCF-7/DOX cells from 81.965 μg/mL to 43.170 μg/mL, the reverse fold was 1.90, and the mRNA expression of MDR1 was significantly down-regulated (P<0.05). The results of GO enrichment analyses and KEGG pathway enrichment analyses indicated that the reversal of DOX resistance in breast cancer by IMP was mainly associated with the regulation of biological processes such as detoxification, multiple biological processes, and cell killing. The main pathway involved was the p53 signaling pathway, and the key targets mainly included constitutively photomorphogenic protein 1 (COP1), cyclin E1 (CCNE1), growth arrest and DNA damage-inducible protein 45A E-mail:tangxilan1983@163.com (GADD45A) and GADD45B. The results of the verification experiments showed that compared with DOX group, there was a trend of up-regulation of COP1 mRNA, and significant down- regulation of CCNE1, GADD45A, and GADD45B mRNA expression in IMP+DOX group (P<0.05). CONCLUSIONS The effect of IMP in ameliorating DOX resistance in breast cancer is related to its regulation of COP1, CCNE1, GADD45A and GADD45B targets in the p53 signaling pathway.
6.Effects of different exercise interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats
Shujuan HU ; Ping CHENG ; Xiao ZHANG ; Yiting DING ; Xuan LIU ; Rui PU ; Xianwang WANG
Chinese Journal of Tissue Engineering Research 2025;29(2):269-278
BACKGROUND:Carboxylesterase 1 and inflammatory factors play a crucial role in regulating lipid metabolism and glucose homeostasis.However,the effects of different exercise intensity interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats remain to be revealed. OBJECTIVE:To investigate the effects of different exercise intensity interventions on carboxylesterase 1 and inflammatory factors in skeletal muscle of type 2 diabetic rats. METHODS:Thirty-two 8-week-old male Sprague-Dawley rats were randomly divided into normal control group(n=12)and modeling group(n=20)after 1 week of adaptive feeding.Rat models of type 2 diabetes mellitus were prepared by high-fat diet and single injection of streptozotocin.After successful modeling,the rats were randomly divided into diabetic control group(n=6),moderate-intensity exercise group(n=6)and high-intensity intermittent exercise group(n=6).The latter two groups were subjected to treadmill training at corresponding intensities,once a day,50 minutes each,and 5 days per week.Exercise intervention in each group was carried out for 6 weeks.After the intervention,ELISA was used to detect blood glucose and blood lipids of rats.The morphological changes of skeletal muscle were observed by hematoxylin-eosin staining.The mRNA expression levels of carboxylesterase 1 and inflammatory cytokines were detected by real-time quantitative PCR.The protein expression levels of carboxylesterase 1 and inflammatory cytokines were detected by western blot and immunofluorescence. RESULTS AND CONCLUSION:Compared with the normal control group,fasting blood glucose,triglyceride,low-density lipoprotein cholesterol,insulin resistance index in the diabetic control group were significantly increased(P<0.01),insulin activity was decreased(P<0.05),and the mRNA and protein levels of carboxylesterase 1,never in mitosis gene A related kinase 7(NEK7)and interleukin 18 in skeletal muscle tissue were upregulated(P<0.05).Compared with the diabetic control group,fasting blood glucose,triglyceride,low-density lipoprotein cholesterol,and insulin resistance index in the moderate-intensity exercise group and high-intensity intermittent exercise group were down-regulated(P<0.05),and insulin activity was increased(P<0.05).Moreover,compared with the diabetic control group,the mRNA level of NEK7 and the protein levels of carboxylesterase 1,NEK7 and interleukin 18 in skeletal muscle were decreased in the moderate-intensity exercise group(P<0.05),while the mRNA levels of carboxylesterase 1,NEK7,NOD-like receptor heat protein domain associated protein 3 and interleukin 18 and the protein levels of carboxylesterase 1 and interleukin 18 in skeletal muscle were downregulated in the high-intensity intermittent exercise group(P<0.05).Hematoxylin-eosin staining showed that compared with the diabetic control group,the cavities of myofibers in the moderate-intensity exercise group became smaller,the number of internal cavities was reduced,and the cellular structure tended to be more intact;the myocytes of rats in the high-intensity intermittent exercise group were loosely arranged,with irregular tissue shape and increased cavities in myofibers.To conclude,both moderate-intensity exercise and high-intensity intermittent exercise can reduce blood glucose,lipid,insulin resistance and carboxylesterase 1 levels in type 2 diabetic rats.Moderate-intensity exercise can significantly reduce the expression level of NEK7 protein in skeletal muscle,while high-intensity intermittent exercise can significantly reduce the expression level of interleukin 18 protein in skeletal muscle.In addition,the level of carboxylesterase 1 is closely related to the levels of NEK7 and interleukin 18.
7.Spatial Distribution Patterns and Environmental Influencing Factors of Flavonoid Glycosides in Epimedium sagittatum
Mengxue LI ; Wenmin ZENG ; Yiting WEI ; Fengqin LI ; Shengfu HU ; Xinyi WANG ; Zhangjian SHAN ; Yanqin XU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(15):217-226
ObjectiveTo explore the spatial distribution patterns of flavonoid glycosides in Epimedium sagittatum and the influences of environmental factors on the accumulation of these components. MethodsThe spatial statistical analysis and GeoDetector model were used to analyze the distribution patterns of epimedin A,epimedin B,epimedin C,icariin,and total flavonoid glycosides in E. sagittatum samples from 92 different production areas in 36 cities of 13 provinces/municipalities/autonomous regions of China,as well as the effects of 28 environmental factors on the accumulation of each component. ResultsThe average content of flavonoid glycosides 64 (69.56%) producing areas and 30 (83.33%) cities met the quality standard of no less than 1.50% of total flavonoid glycosides in the 2020 edition of Chinese Pharmacopoeia.Epimedin A,epimedin B,epimedin C,icariin,and their sum showed significantly high accumulation.The hot spots regions of epimedin A and epimedin B were similar with each other,mainly located in western Hunan,eastern Hubei,eastern Guizhou,and northern Guangxi.The common hot spot areas of epimedin C and total flavonoid glycosides were in western and southwestern Hunan,southern Henan,northern Anhui,eastern Guizhou,and southern Chongqing.The hot spots areas of icariin were in southern Chongqing,western Hunan,and eastern and northeastern Guizhou.The interactions between environmental factors had stronger explanatory power for the accumulation of components than single factors.The strongest single factor and interactive factor affecting the accumulation of epimedin C were precipitation of wettest quarter (q=0.16) and its interaction with temperature seasonality (q=0.35),respectively.The strongest single factor influencing both the accumulation of icariin and total flavonoid glycosides was the precipitation of coldest quarter (q equals 0.15 and 0.22,respectively).The strongest interactions were observed between precipitation of coldest quarter and gravel content (q=0.34),as well as between precipitation of coldest quarter and aspect (q=0.35). ConclusionThirteen cities,including Zhumadian and Nanyang in Henan,Huaihua,Shaoyang,and Zhangjiajie in Hunan,and Zunyi,Qiandongnan,and Tongren in Guizhou,were hot spots of total flavonoid glycosides in E.sagittatum.Precipitation,gravel content,temperature seasonality,and aspect significantly influence the accumulation of flavonoid glycosides in E.sagittatum.This study provides reference for the utilization and production zoning of E.sagittatum.
8.Mechanism of action of the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome and its regulation in liver injury.
Yifan LU ; Tianyu WANG ; Bo YU ; Kang XIA ; Jiayu GUO ; Yiting LIU ; Xiaoxiong MA ; Long ZHANG ; Jilin ZOU ; Zhongbao CHEN ; Jiangqiao ZHOU ; Tao QIU
Chinese Medical Journal 2025;138(9):1061-1071
Nucleotide-binding oligomerization domain (NOD)-like receptor protein 3 (NLRP3) is a cytosolic pattern recognition receptor that recognizes multiple pathogen-associated molecular patterns and damage-associated molecular patterns. It is a cytoplasmic immune factor that responds to cellular stress signals, and it is usually activated after infection or inflammation, forming an NLRP3 inflammasome to protect the body. Aberrant NLRP3 inflammasome activation is reportedly associated with some inflammatory diseases and metabolic diseases. Recently, there have been mounting indications that NLRP3 inflammasomes play an important role in liver injuries caused by a variety of diseases, specifically hepatic ischemia/reperfusion injury, hepatitis, and liver failure. Herein, we summarize new research pertaining to NLRP3 inflammasomes in hepatic injury, hepatitis, and liver failure. The review addresses the potential mechanisms of action of the NLRP3 inflammasome, and its regulation in these liver diseases.
Humans
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Inflammasomes/physiology*
;
Animals
;
Liver Diseases/metabolism*
;
Liver/metabolism*
;
Reperfusion Injury/metabolism*
9.Spherical measurement-based analysis of gradient nonlinearity in magnetic resonance imaging.
Xiaoli YANG ; Zhaolian WANG ; Qian WANG ; Yiting ZHANG ; Zixuan SONG ; Yuchang ZHANG ; Yafei QI ; Xiaopeng MA
Journal of Biomedical Engineering 2025;42(1):174-180
The gradient field, one of the core magnetic fields in magnetic resonance imaging (MRI) systems, is generated by gradient coils and plays a critical role in spatial encoding and the generation of echo signals. The uniformity or linearity of the gradient field directly impacts the quality and distortion level of MRI images. However, traditional point measurement methods lack accuracy in assessing the linearity of gradient fields, making it difficult to provide effective parameters for image distortion correction. This paper introduced a spherical measurement-based method that involved measuring the magnetic field distribution on a sphere, followed by detailed magnetic field calculations and linearity analysis. This study, applied to assess the nonlinearity of asymmetric head gradient coils, demonstrated more comprehensive and precise results compared to point measurement methods. This advancement not only strengthens the scientific basis for the design of gradient coils but also provides more reliable parameters and methods for the accurate correction of MRI image distortions.
Magnetic Resonance Imaging/instrumentation*
;
Humans
;
Image Processing, Computer-Assisted/methods*
;
Nonlinear Dynamics
;
Magnetic Fields
;
Algorithms
;
Phantoms, Imaging
10.Divergent activation patterns of BRS3 revealed by two Chinese herb-derived agonists.
Jie LI ; Changyao LI ; Qingtong ZHOU ; Wei HAN ; Mingzhu FANG ; Youwei XU ; Yiting MAI ; Yao ZHANG ; Jiahua CUI ; H Eric XU ; Yan ZHANG ; Wanchao YIN ; Ming-Wei WANG
Acta Pharmaceutica Sinica B 2025;15(10):5231-5243
Bombesin receptor subtype-3 (BRS3) is an orphan G protein-coupled receptor (GPCR) that plays critical roles in energy homeostasis, glucose metabolism, and insulin secretion. Recent structural studies have elucidated BRS3 signaling mechanisms using synthetic ligands, including BA1 and MK-5046. However, the molecular basis of BRS3 activation by bioactive natural compounds and their derivatives, particularly those derived from traditional Chinese medicine, remains unclear. Here, we present high-resolution cryogenic electron microscopy (cryo-EM) structures of the human BRS3-Gq complex in both unliganded and active states bound by two herb-derived compounds (DSO-5a and oridonin), at resolutions of 2.9, 2.8, and 2.9 Å, respectively. These structures display distinct ligand recognition patterns between DSO-5a and oridonin. Although both compounds bind to the orthosteric pocket, they differentially engage the interaction network of BRS3, as demonstrated by mutagenesis studies assessing calcium mobilization and inositol phosphate 1 (IP1) accumulation. These findings enhance our understanding of BRS3 activation and provide valuable insights into the development of small-molecule BRS3 modulators with therapeutic potential.


Result Analysis
Print
Save
E-mail